An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants
Abstract
:1. Introduction
2. Background
2.1. Operation and Gas Exhaustion Process of the Electric Arc Furnace
2.2. Data-Driven NOx Emissions Prediction Research
2.3. Interpretable Prediction Models
3. Methodology
3.1. Kalman Filter-Based Smoothing Algorithm
Algorithm 1. Kalman filter-based smoothing algorithm |
Input: Output: Prediction: (a) State prediction (Equation (1)). (b) Error covariance prediction (Equation (2)). Update: (c) Innovation (Equation (3)) (d) Kalman gain (Equation (4)) (e) State update (Equation (5)) (f) Error covariance update (Equation (6)) |
3.2. NOx Emission Prediction
3.2.1. Long Short-Term Memory Network
3.2.2. Delay Time Determination
3.2.3. NOx Emission Prediction Model Development
3.3. Interpretation of the NOx Emissions Prediction
4. Analyses and Results
4.1. Data Preparation
4.2. NOx Emission Prediction
4.3. Interpretation of the NOx Emission Prediction
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agency, I.E. Iron and Steel Technology Roadmap: Towards More Sustainable Steelmaking; OECD Publishing: Berlin, Germany, 2020. [Google Scholar]
- Jonidi Jafari, A.; Charkhloo, E.; Pasalari, H. Urban air pollution control policies and strategies: A systematic review. J. Environ. Health Sci. Eng. 2021, 19, 1911–1940. [Google Scholar] [CrossRef]
- Trnka, D. Policies, Regulatory Framework and Enforcement for Air Quality Management: The Case of Korea; OECD Publishing: Berlin, Germany, 2020. [Google Scholar]
- Fichte, R. Ferroalloys. Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Kirschen, M.; Voj, L.; Pfeifer, H. NO x emission from electric arc furnace in steel industry: Contribution from electric arc and co-combustion reactions. Clean Technol. Environ. Policy 2005, 7, 236–244. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone’s impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef]
- Yang, G.T.; Wang, Y.N.; Li, X.L. Prediction of the NO emissions from thermal power plant using long-short term memory neural network. Energy 2020, 192, 116597. [Google Scholar] [CrossRef]
- Tang, Z.H.; Wang, S.K.; Chai, X.Y.; Cao, S.X.; Ouyang, T.H.; Li, Y. Auto-encoder-extreme learning machine model for boiler NO emission concentration prediction. Energy 2022, 256, 124552. [Google Scholar] [CrossRef]
- Wang, F.; Ma, S.; Wang, H.; Li, Y.; Zhang, J. Prediction of NOx emission for coal-fired boilers based on deep belief network. Control Eng. Pract. 2018, 80, 26–35. [Google Scholar] [CrossRef]
- Yuan, Z.; Meng, L.; Gu, X.; Bai, Y.; Cui, H.; Jiang, C. Prediction of NOx emissions for coal-fired power plants with stacked-generalization ensemble method. Fuel 2021, 289, 119748. [Google Scholar] [CrossRef]
- Korpela, T.; Kumpulainen, P.; Majanne, Y.; Häyrinen, A.; Lautala, P. Indirect NOx emission monitoring in natural gas fired boilers. Control Eng. Pract. 2017, 65, 11–25. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, X.; Cao, S.; Zhou, H.; Fan, S.; Li, K.; Huang, W. NOx emission prediction using a lightweight convolutional neural network for cleaner production in a down-fired boiler. J. Clean. Prod. 2023, 389, 136060. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Liu, X. Heat transfer calculation methods in three-dimensional CFD model for pulverized coal-fired boilers. Appl. Therm. Eng. 2020, 166, 114633. [Google Scholar] [CrossRef]
- Belošević, S.; Tomanović, I.; Beljanski, V.; Tucaković, D.; Živanović, T. Numerical prediction of processes for clean and efficient combustion of pulverized coal in power plants. Appl. Therm. Eng. 2015, 74, 102–110. [Google Scholar] [CrossRef]
- Chan, E.; Riley, M.; MJ, T.; EJ, E. Nitrogen oxides (NOx) formation and control in an electric arc furnace (EAF): Analysis with measurements and computational fluid dynamics (CFD) modeling. ISIJ Int. 2004, 44, 429–438. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Lou, C.; Cheng, Q.; Jiang, Z.; He, J.; Huang, B.; Pei, Z.; Lu, C. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proc. Combust. Inst. 2005, 30, 1699–1706. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Shao, S.; Duan, S.; Hou, H. ANN-GA approach for predictive modelling and optimization of NOx emissions in a cement precalcining kiln. Int. J. Environ. Stud. 2017, 74, 253–261. [Google Scholar] [CrossRef]
- Ding, X.; Feng, C.; Yu, P.; Li, K.; Chen, X. Gradient boosting decision tree in the prediction of NOx emission of waste incineration. Energy 2023, 264, 126174. [Google Scholar] [CrossRef]
- Fleuriault, C.; Grogan, J.; White, J. Electric arc smelting. JOM 2019, 71, 321–322. [Google Scholar] [CrossRef]
- Singh, R. Applied Welding Engineering: Processes, Codes, and Standards; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Kim, J.; Lee, G.; Lee, S.; Lee, C. Towards expert–machine collaborations for technology valuation: An interpretable machine learning approach. Technol. Forecast. Soc. Chang. 2022, 183, 121940. [Google Scholar] [CrossRef]
- Faravelli, T.; Bua, L.; Frassoldati, A.; Antifora, A.; Tognotti, L.; Ranzi, E. A new procedure for predicting NOx emissions from furnaces. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2000; Volume 8, pp. 859–864. [Google Scholar]
- Lv, M.; Zhao, J.; Cao, S.; Shen, T. Prediction of the 3D Distribution of NOx in a Furnace via CFD Data Based on ELM. Front. Energy Res. 2022, 10, 848209. [Google Scholar] [CrossRef]
- Safdarnejad, S.M.; Tuttle, J.F.; Powell, K.M. Dynamic modeling and optimization of a coal-fired utility boiler to forecast and minimize NOx and CO emissions simultaneously. Comput. Chem. Eng. 2019, 124, 62–79. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, G.; Wang, Y.; Zeng, B.; Yu, X.; He, S. Prediction Model for Transient NOx Emission of Diesel Engine Based on CNN-LSTM Network. Energies 2023, 16, 5347. [Google Scholar] [CrossRef]
- Li, N.; Lv, Y.; Hu, Y. Prediction of NOx Emissions from a Coal-Fired Boiler Based on Convolutional Neural Networks with a Channel Attention Mechanism. Energies 2022, 16, 76. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608. [Google Scholar]
- Molnar, C. Interpretable Machine Learning; Lulu.Com: Raleigh, NC, USA, 2020. [Google Scholar]
- Das, A.; Rad, P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv 2020, arXiv:2006.11371. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Liu, Z.; Abedin, M.Z.; Wang, J.; Yang, W.; Dong, Q. Profit-driven weighted classifier with interpretable ability for customer churn prediction. Omega 2024, 125, 103034. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, P.; Wang, J.; Du, Z.; Niu, X.; Zhang, L. Hospitality order cancellation prediction from a profit-driven perspective. Int. J. Contemp. Hosp. Manag. 2023, 35, 2084–2112. [Google Scholar] [CrossRef]
- Rabby, M.F.; Tu, Y.; Hossen, M.I.; Lee, I.; Maida, A.S.; Hei, X. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. BMC Med. Inform. Decis. Mak. 2021, 21, 101. [Google Scholar] [CrossRef]
- Xue, G.; Qi, C.; Li, H.; Kong, X.; Song, J. Heating load prediction based on attention long short term memory: A case study of Xingtai. Energy 2020, 203, 117846. [Google Scholar] [CrossRef]
- Staal, O.M.; Sælid, S.; Fougner, A.; Stavdahl, Ø. Kalman smoothing for objective and automatic preprocessing of glucose data. IEEE J. Biomed. Health Inform. 2018, 23, 218–226. [Google Scholar] [CrossRef]
- Song, M.; Xue, J.; Gao, S.; Cheng, G.; Chen, J.; Lu, H.; Dong, Z. Prediction of NOx concentration at SCR inlet based on BMIFS-LSTM. Atmosphere 2022, 13, 686. [Google Scholar] [CrossRef]
- Wen, X.; Li, K.; Wang, J. NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners. Energy 2023, 264, 126171. [Google Scholar] [CrossRef]
- Bostani, H.; Sheikhan, M. Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems. Soft Comput. 2017, 21, 2307–2324. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed]
- Shapley, L.S. Additive and Non-Additive Set Functions; Princeton University: Princeton, NJ, USA, 1953. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Chen, H.; Lundberg, S.; Lee, S.-I. Explaining models by propagating Shapley values of local components. In Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability; Springer: Cham, Switzerland, 2021; pp. 261–270. [Google Scholar]
Facility | Data | Prediction Method | Reference |
---|---|---|---|
Gas/oil-fired boiler | Fluent-based simulation data | Computer fluid dynamics, ideal reactor network | Faravelli, Bua, Frassoldati, Antifora, Tognotti, and Ranzi [22] |
Coal-fired boiler | Fluent-based simulation data | Computer fluid dynamics, extreme learning machine | Lv, Zhao, Cao, and Shen [23] |
Coal-fired boiler | Historical operation data, fluent-based simulation data, and experimental data | Deep belief network | Wang, Ma, Wang, Li, and Zhang [9] |
Coal-fired boiler | Historical operation data | Auto-encoder, extreme learning machine | Tang, Wang, Chai, Cao, Ouyang, and Li [8] |
Cement precalcining kiln | Historical operation data | Artificial neural network | Zhang, Wang, Shao, Duan, and Hou [17] |
Coal-fired boiler | Historical operation data | Recurrent neural network | Safdarnejad, Tuttle, and Powell [24] |
Coal-fired boiler | Historical operation data | Long short-term memory network | Yang, Wang, and Li [7] |
Diesel engine | World harmonized transient cycle (WHTC) emission test data | Convolutional neural network, long short-term memory network | Shen, Wang, Wang, Zeng, Yu, and He [25] |
Coal-fired boiler | Historical operation data | Random forest algorithm, lightweight convolutional neural network | Wang, Peng, Cao, Zhou, Fan, Li, and Huang [12] |
Coal-fired boiler | Historical operation data | Convolutional neural networks, channel Attention mechanism | Li et al. [26] |
Data Description | Mutual Information | Delay Time (5 min) | Data Description | Mutual Information | Delay Time (5 min) |
---|---|---|---|---|---|
Electrode Depth-A | 0.2646 | 3 | Dust Duct Temperature-A | 0.8403 | 1 |
Electrode Depth-B | 0.2283 | 1 | Dust Duct Temperature-B | 0.7489 | 1 |
Electrode Depth-C | 0.2538 | 1 | Dust Duct Temperature-C | 0.7651 | 1 |
Electrode Supply Water Flow | 0.1457 | 4 | Semi Dry Reactor Inlet Temperature | 0.7935 | 1 |
Press Down Elevation-A | 0.2590 | 3 | Semi Dry Reactor Outlet Temperature | 0.5817 | 2 |
Press Down Elevation-B | 0.2992 | 3 | Bag Filter Inlet Pressure | 0.2683 | 6 |
Press Down Elevation-C | 0.3053 | 3 | Bag Filter Differential Pressure | 0.2290 | 6 |
Power Use | 0.5097 | 3 | Induced Draft Fan Inlet Pressure | 0.5280 | 1 |
Shell Cooling Water Supply Flow | 0.2129 | 2 | Induced Draft Fan Power | 0.5765 | 2 |
Model | MAPE | R2 | MAE | MSE |
---|---|---|---|---|
Proposed Model (NOx) | 9.4506 | 0.9145 | 1.7823 | 6.4525 |
Model without NOx | 42.6532 | 0.5859 | 4.8642 | 31.2548 |
Model with only NOx | 12.7176 | 0.5655 | 2.3918 | 10.1512 |
Linear Regression | 14.5906 | 0.8841 | 2.2690 | 8.7988 |
Deep Neural Network (DNN) | 14.1423 | 0.8751 | 2.3234 | 9.4811 |
Gradient Boosting Regression | 19.4197 | 0.7903 | 3.1028 | 15.9172 |
Random Forest Regression | 16.0896 | 0.8777 | 2.3040 | 9.2833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seol, Y.; Lee, S.; Lee, J.; Kim, C.-W.; Bak, H.S.; Byun, Y.; Yoon, J. An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants. Mathematics 2024, 12, 878. https://doi.org/10.3390/math12060878
Seol Y, Lee S, Lee J, Kim C-W, Bak HS, Byun Y, Yoon J. An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants. Mathematics. 2024; 12(6):878. https://doi.org/10.3390/math12060878
Chicago/Turabian StyleSeol, Youngjin, Seunghyun Lee, Jiho Lee, Chang-Wan Kim, Hyun Su Bak, Youngchul Byun, and Janghyeok Yoon. 2024. "An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants" Mathematics 12, no. 6: 878. https://doi.org/10.3390/math12060878
APA StyleSeol, Y., Lee, S., Lee, J., Kim, C. -W., Bak, H. S., Byun, Y., & Yoon, J. (2024). An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants. Mathematics, 12(6), 878. https://doi.org/10.3390/math12060878