Strong Ellipticity and Infinitesimal Stability within Nth-Order Gradient Elasticity
Abstract
:1. Introduction
2. Governing Equations
3. Series of Gradient Models and Their Ellipticity
4. Infinitesimal Stability
5. Affine Deformations and Linearized Equations
6. Stability of Affine Deformation
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maugin, G.A. Generalized Continuum Mechanics: Various Paths. In Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective; Springer: Dordrecht, The Netherlands, 2013; pp. 223–241. [Google Scholar]
- Maugin, G.A. Non-Classical Continuum Mechanics: A Dictionary; Springer: Singapore, 2017. [Google Scholar]
- dell’Isola, F.; Della Corte, A.; Giorgio, I. Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 2017, 22, 852–872. [Google Scholar] [CrossRef] [Green Version]
- Aifantis, E.C. Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 1999, 121, 189–202. [Google Scholar] [CrossRef]
- Aifantis, E. Chapter One–Internal Length Gradient (ILG) Material Mechanics Across Scales and Disciplines. Adv. Appl. Mech. 2016, 49, 1–110. [Google Scholar]
- Cordero, N.M.; Forest, S.; Busso, E.P. Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 2016, 97, 92–124. [Google Scholar] [CrossRef]
- Lazar, M.; Agiasofitou, E.; Böhlke, T. Mathematical modeling of the elastic properties of cubic crystals at small scales based on the Toupin–Mindlin anisotropic first strain gradient elasticity. Contin. Mech. Thermodyn. 2022, 34, 107–136. [Google Scholar] [CrossRef]
- Abdoul-Anziz, H.; Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 2018, 6, 213–250. [Google Scholar] [CrossRef] [Green Version]
- dell’Isola, F.; Steigmann, D. A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 2015, 118, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Rahali, Y.; Giorgio, I.; Ganghoffer, J.F.; dell’Isola, F. Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 2015, 97, 148–172. [Google Scholar] [CrossRef] [Green Version]
- dell’Isola, F.; Steigmann, D.J. Discrete and Continuum Models for Complex Metamaterials; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Bertram, A.; Forest, S. (Eds.) Mechanics of Strain Gradient Materials; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Bertram, A. Compendium on Gradient Materials; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Lurie, A.I. Non-linear Theory of Elasticity; North-Holland: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Ogden, R.W. Non-Linear Elastic Deformations; Dover: Mineola, NY, USA, 1997. [Google Scholar]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics, 3rd ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Toupin, R.A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 1962, 11, 385–414. [Google Scholar] [CrossRef] [Green Version]
- Toupin, R.A. Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 1964, 17, 85–112. [Google Scholar] [CrossRef]
- Mindlin, R.D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Eshel, N.N. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 1968, 4, 109–124. [Google Scholar] [CrossRef]
- Mindlin, R.D. Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1965, 1, 417–438. [Google Scholar] [CrossRef]
- Reiher, J.C.; Bertram, A. Finite third-order gradient elasticity and thermoelasticity. J. Elast. 2018, 133, 223–252. [Google Scholar] [CrossRef]
- Eremeyev, V.A. Local material symmetry group for first- and second-order strain gradient fluids. Math. Mech. Solids 2021, 26, 1173–1190. [Google Scholar] [CrossRef]
- dell’Isola, F.; Seppecher, P.; Madeo, A. How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: Approach “à la D’Alembert”. ZAMP 2012, 63, 1119–1141. [Google Scholar] [CrossRef] [Green Version]
- Fichera, G. Linear Elliptic Differential Systems and Eigenvalue Problems; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1965; Volume 8. [Google Scholar]
- Volevich, L.R. Solubility of boundary value problems for general elliptic systems (in Russian). Sb. Math. 1965, 68, 373–416. [Google Scholar]
- Agranovich, M. Elliptic Boundary Problems. In Partial Differential Equations IX: Elliptic Boundary Problems. Encyclopaedia of Mathematical Sciences; Agranovich, M., Egorov, Y., Shubin, M., Eds.; Springer: Berlin, Germany, 1997; Volume 79, pp. 1–144. [Google Scholar]
- Egorov, Y.V.; Shubin, M.A. Foundations of the Classical Theory of Partial Differential Equations, 1st ed.; Encyclopaedia of Mathematical Sciences 30; Springer: Berlin/Heidelberg, Germany, 1998; Volume 30. [Google Scholar]
- Vishik, M.I. On strongly elliptic systems of differential equations (in Russian). Sb. Math. 1951, 29, 615–657. [Google Scholar]
- Nirenberg, L. Remarks on strongly elliptic partial differential equations. Commun. Pure Appl. Math. 1955, 8, 648–674. [Google Scholar] [CrossRef]
- Eremeyev, V.A. Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity. Mech. Res. Commun. 2021, 117, 103782. [Google Scholar] [CrossRef]
- Eremeyev, V.A. On well-posedness of the first boundary-value problem within linear isotropic Toupin–Mindlin strain gradient elasticity and constraints for elastic moduli. ZAMM-J. Appl. Math. Mech. für Angew. Math. und Mech. 2023, e202200474. [Google Scholar]
- Eremeyev, V.A. On strong ellipticity and infinitesimal stability in third-order nonlinear strain gardient elasticity theory. Mech. Solids 2022, 57, 1953–1957. [Google Scholar]
- Eremeyev, V.A.; Cloud, M.J.; Lebedev, L.P. Applications of Tensor Analysis in Continuum Mechanics; World Scientific: Hackensack, NJ, USA, 2018. [Google Scholar]
- Yosida, K. Functional Analysis, 6th ed.; Springer: Berlin, Germany, 1980. [Google Scholar]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Pure and Applied Mathematics; Academic Press: Amsterdam, The Netherland, 2003; Volume 140. [Google Scholar]
- Eremeyev, V.A.; Reccia, E. Nonlinear strain gradient and micromorphic one-dimensional elastic continua: Comparison through strong ellipticity conditions. Mech. Res. Commun. 2022, 124, 103909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eremeyev, V.A. Strong Ellipticity and Infinitesimal Stability within Nth-Order Gradient Elasticity. Mathematics 2023, 11, 1024. https://doi.org/10.3390/math11041024
Eremeyev VA. Strong Ellipticity and Infinitesimal Stability within Nth-Order Gradient Elasticity. Mathematics. 2023; 11(4):1024. https://doi.org/10.3390/math11041024
Chicago/Turabian StyleEremeyev, Victor A. 2023. "Strong Ellipticity and Infinitesimal Stability within Nth-Order Gradient Elasticity" Mathematics 11, no. 4: 1024. https://doi.org/10.3390/math11041024
APA StyleEremeyev, V. A. (2023). Strong Ellipticity and Infinitesimal Stability within Nth-Order Gradient Elasticity. Mathematics, 11(4), 1024. https://doi.org/10.3390/math11041024