Risk-Sensitive Maximum Principle for Controlled System with Delay
Abstract
:1. Introduction
- (1)
- Different from the systems investigated in [24,30], the state system considered in this paper is stochastic and delayed. Moreover, the cost functional is an HARA expected utility functional with exponent , which can be used to describe some specific financial phenomena. Thus, the results of this paper can be applied to solve more financial problems.
- (2)
- (3)
2. Problem Formulation
3. MP and Verification Theorem
3.1. MP
3.2. Verification Theorem
4. A General RSCP
4.1. MP
4.2. Verification Theorem
5. Applications
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bensoussan, A.; Van Schuppen, J. Optimal control of partially observable stochastic systems with an exponential-of-integral performance index. SIAM J. Control Optim. 1985, 23, 599–613. [Google Scholar] [CrossRef] [Green Version]
- Hata, H.; Sekine, J. Explicit solution to a certain non-ELQG risk-sensitive stochastic control problem. Appl. Math. Optim 2010, 62, 341–380. [Google Scholar] [CrossRef]
- Lim, A.; Zhou, X. Risk-sensitive control with HARA utility. IEEE Trans. Automat. Control 2001, 46, 563–578. [Google Scholar] [CrossRef]
- Fleming, W. Risk-sensitive stochastic control and differential games. Commun. Inf. Syst. 2006, 6, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Tembine, H.; Zhu, Q.; Basar, T. Risk-sensitive mean-field games. IEEE Trans. Automat. Control 2014, 59, 835–850. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Lleo, S. Jump-diffusion risk-sensitive asset management I: Diffusion factor model. SIAM J. Financ. Math. 2011, 2, 22–54. [Google Scholar] [CrossRef] [Green Version]
- Whittle, P. A risk-sensitive maximum principle. Systems Control Lett. 1990, 15, 183–192. [Google Scholar] [CrossRef]
- Lim, A.; Zhou, X. A new risk-sensitive maximum principle. IEEE Trans. Automat. Control 2005, 50, 958–966. [Google Scholar] [CrossRef]
- Shi, J.; Wu, Z. Maximum principle for risk-sensitive stochastic optimal control problem and applications to finance. Stoch. Anal. Appl. 2012, 30, 997–1018. [Google Scholar] [CrossRef]
- Wang, G.; Wu, Z. General maximum principles for partially observed risksensitive optimal control problems and applications to finance. J. Optim. Theory Appl. 2009, 141, 677–700. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Wang, G. Maximum principles for a class of partial information risk-sensitive optimal controls. IEEE Trans. Automat. Control 2010, 55, 1438–1443. [Google Scholar] [CrossRef]
- Shi, J.; Wu, Z. A risk-sensitive stochastic maximum principle for optimal control of jump diffusions and its applications. Acta Math. Sci. Ser. B 2011, 31, 419–433. [Google Scholar]
- Ma, H.; Liu, B. Maximum principle for partially observed risk-sensitive optimal control problems of mean-field type. Eur. J. Control 2016, 32, 16–23. [Google Scholar] [CrossRef]
- Moon, J. Risk-sensitive maximum principle for stochastic optimal control of mean-field type Markov regime-switching jump-diffusion systems. Int. J. Robust Nonlinear Control 2021, 31, 2141–2167. [Google Scholar] [CrossRef]
- Moon, J. Generalized risk-sensitive optimal control and Hamilton-Jacobi-Bellman equation. IEEE Trans. Automat. Control 2021, 66, 2319–2325. [Google Scholar] [CrossRef]
- Zhu, B.; Han, B.; Lin, X. Existence results for a class of semilinear fractional partial differential equations with delay in Banach spaces. J. Funct. Spaces 2019, 2019, 6295019. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S. Stochastic Functional Differential Equations; Pitman Advanced Publishing Program: El-Bireh, Palestine, 1984; Volume 99. [Google Scholar]
- Mohammed, S. Stochastic differential equations with memory: Theory, examples and applications. In Stochastic Analysis and Related Topics VI; Progress in Probability; Birkhuser: Boston, MA, USA, 1996; pp. 1–77. [Google Scholar]
- Ramsey, R. A mathematical theory of savings. Econ. J. 1928, 38, 543–559. [Google Scholar] [CrossRef]
- Gandolfo, G. Economic Dynamics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Arriojas, M.; Hu, Y.; Mohammed, S.; Pap, G. A delayed black and scholes formula. Stoch. Anal. Appl. 2007, 25, 471–492. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.; Swishchuk, A. Optimal control of stochastic dierential delay equations with application in economics. Russ. Math. Surv. 2008, 2, 157–183. [Google Scholar]
- Richard, J. Time-delay systems: An overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694. [Google Scholar] [CrossRef]
- Wang, P. Maximum principle for optimal control problem with delay. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018. [Google Scholar] [CrossRef]
- Peng, S.; Yang, Z. Anticipated backward stochastic differential equation. Ann. Probab. 2009, 37, 877–902. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wu, Z. Maximum principle for the stochastic optimal control problem with delay and application. Automatica 2010, 46, 1074–1080. [Google Scholar] [CrossRef]
- Wu, S. Partially-observed maximum principle for backward stochastic differential delay equations. IEEE-CAA J. Autom. Sin. 2017, 99, 1–6. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Wu, Z. An indefinite stochastic linear quadratic optimal control problem with delay and related forward-backward stochastic differential equations. J. Optim. Theory Appl. 2018, 179, 722–744. [Google Scholar] [CrossRef]
- Hao, T.; Meng, Q. A second-order maximum principle for singular optimal controls with recursive utilities of stochastic delay systems. Eur. J. Control 2019, 50, 96–106. [Google Scholar] [CrossRef]
- Ma, H.; Liu, B. Optimal control problem for risk-sensitive mean-field stochastic delay differential equation with partial information. Asian J. Control 2017, 19, 2097–2115. [Google Scholar] [CrossRef]
- Moon, J.; Duncan, T.E.; Basar, T. Risk-sensitive zero-sum differential games. IEEE Trans. Automat. Control 2019, 64, 1503–1518. [Google Scholar] [CrossRef]
- Moon, J. Necessary and sufficient conditions of risk-sensitive optimal control and differential games for stochastic differential delayed equations. Int. J. Robust Nonlinear Control 2019, 29, 4812–4827. [Google Scholar] [CrossRef]
- Zhang, L. A BSDE approach to stochastic differential games involving impulse controls and HJBI equation. J. Syst. Sci. Complex. 2022, 35, 766–801. [Google Scholar] [CrossRef]
- Wang, G.; Wu, Z. Stochastic maximum principle for a kind of risk-sensitive optimal control problem and application to portfolio choice. Acta Automat. Sin. 2007, 33, 1043–1047. [Google Scholar] [CrossRef]
- Baaquie, B. Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Arraut, I.; Au, A.; Tse, A. Spontaneous symmetry breaking in quantum finance. Europhys. Lett. 2020, 131, 68003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P. Risk-Sensitive Maximum Principle for Controlled System with Delay. Mathematics 2023, 11, 1058. https://doi.org/10.3390/math11041058
Wang P. Risk-Sensitive Maximum Principle for Controlled System with Delay. Mathematics. 2023; 11(4):1058. https://doi.org/10.3390/math11041058
Chicago/Turabian StyleWang, Peng. 2023. "Risk-Sensitive Maximum Principle for Controlled System with Delay" Mathematics 11, no. 4: 1058. https://doi.org/10.3390/math11041058
APA StyleWang, P. (2023). Risk-Sensitive Maximum Principle for Controlled System with Delay. Mathematics, 11(4), 1058. https://doi.org/10.3390/math11041058