Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anisotropic Hyperelastic Modeling
2.2. Material Characterization via the Tensile Test
2.3. Transversal Isotropy Stabilization Criterion
2.3.1. Uniaxial Transversal Stretch
2.3.2. Stability Criterion
2.3.3. Transverse Stability of HGO and GHO Constitutive Models
2.3.4. Penalty and Objective Function for Transverse Stability
2.4. Inverse Finite Element Characterization
2.4.1. Pressurization Test and Numerical Simulation
2.4.2. Inverse Calibration Procedure
2.5. Evolutionary Strategies
3. Results
3.1. Assessment of Evolution Strategies
3.2. Characterization of Experimental Data with Stabilization Criterion
3.3. Inverse Finite Element Characterization
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, J.A.; Al-Qadi, I.L. Tire–pavement interaction modelling: Hyperelastic tire and elastic pavement. Road Mater. Pavement Des. 2017, 18, 1067–1083. [Google Scholar] [CrossRef]
- Abubakar, I.; Myler, P.; Zhou, E. Constitutive modelling of elastomeric seal material under compressive loading. Model. Numer. Simul. Mater. Sci. 2016, 6, 28–40. [Google Scholar] [CrossRef]
- Ucar, H.; Basdogan, I. Dynamic characterization and modeling of rubber shock absorbers: A comprehensive case study. J. Low Freq. Noise Vib. Act. Control 2018, 37, 509–518. [Google Scholar] [CrossRef]
- Goury, O.; Duriez, C. Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Trans. Robot. 2018, 34, 1565–1576. [Google Scholar] [CrossRef]
- Park, Y.L.; Majidi, C.; Kramer, R.; Bérard, P.; Wood, R.J. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 2010, 20, 125029. [Google Scholar] [CrossRef]
- Chagnon, G.; Rebouah, M.; Favier, D. Hyperelastic energy densities for soft biological tissues: A review. J. Elast. 2015, 120, 129–160. [Google Scholar] [CrossRef]
- Nolan, D.R.; Gower, A.L.; Destrade, M.; Ogden, R.W.; McGarry, J. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater. 2014, 39, 48–60. [Google Scholar] [CrossRef]
- Avril, S.; Badel, P.; Duprey, A. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. J. Biomech. 2010, 43, 2978–2985. [Google Scholar] [CrossRef]
- García-Herrera, C.M.; Celentano, D.J.; Cruchaga, M.A. Bending and pressurisation test of the human aortic arch: Experiments, modelling and simulation of a patient-specific case. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 830–839. [Google Scholar] [CrossRef]
- Veselỳ, J.; Hornỳ, L.; Chlup, H.; Adámek, T.; Krajíček, M.; Žitnỳ, R. Constitutive modeling of human saphenous veins at overloading pressures. J. Mech. Behav. Biomed. Mater. 2015, 45, 101–108. [Google Scholar] [CrossRef]
- Whitford, C.; Movchan, N.V.; Studer, H.; Elsheikh, A. A viscoelastic anisotropic hyperelastic constitutive model of the human cornea. Biomech. Model. Mechanobiol. 2018, 17, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Peña, E.; Calvo, B.; Doblaré, M.; Mascarenhas, T.; Natal Jorge, R.; Ferreira, A. Prediction of nonlinear elastic behaviour of vaginal tissue: Experimental results and model formulation. Comput. Methods Biomech. Biomed. Eng. 2010, 13, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Nemavhola, F.; Ngwangwa, H.M.; Pandelani, T. An investigation of uniaxial mechanical properties of excised sheep heart muscle fibre–fitting of different hyperelastic constitutive models. Preprints 2021, 2021080566. [Google Scholar]
- Annaidh, A.N.; Bruyère, K.; Destrade, M.; Gilchrist, M.D.; Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 2012, 5, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, A.G. Nonlinear Solid Mechanics II; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Gasser, T.C.; Ogden, R.W.; Holzapfel, G.A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 2006, 3, 15–35. [Google Scholar] [CrossRef]
- Dodson, R.B.; Martin, J.T.; Hunter, K.S.; Ferguson, V.L. Determination of hyperelastic properties for umbilical artery in preeclampsia from uniaxial extension tests. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 207–212. [Google Scholar] [CrossRef]
- Labus, K.M.; Puttlitz, C.M. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships. J. Mech. Behav. Biomed. Mater. 2016, 62, 195–208. [Google Scholar] [CrossRef]
- Tonge, T.K.; Atlan, L.S.; Voo, L.M.; Nguyen, T.D. Full-field bulge test for planar anisotropic tissues: Part I–Experimental methods applied to human skin tissue. Acta Biomater. 2013, 9, 5913–5925. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 2010, 7, 787–799. [Google Scholar] [CrossRef]
- Rivera, E.; Canales, C.; Alarcón, M.P.; García-Herrera, C.; Macías, D.; Celentano, D.J.; Herrera, E.A. Biomechanical characterization of the passive response of the thoracic aorta in chronic hypoxic newborn lambs using an evolutionary strategy. Sci. Rep. 2021, 11, 13875. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, G.K.; Wang, G.F. On the determination of elastic moduli of cells by AFM based indentation. Sci. Rep. 2017, 7, 45575. [Google Scholar] [CrossRef] [PubMed]
- Chanda, A.; Chatterjee, S.; Gupta, V. Soft composite based hyperelastic model for anisotropic tissue characterization. J. Compos. Mater. 2020, 54, 4525–4534. [Google Scholar] [CrossRef]
- Sasso, M.; Palmieri, G.; Chiappini, G.; Amodio, D. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 2008, 27, 995–1004. [Google Scholar] [CrossRef]
- Íñiguez-Macedo, S.; Lostado-Lorza, R.; Escribano-García, R.; Martínez-Calvo, M.Á. Finite element model updating combined with multi-response optimization for hyper-elastic materials characterization. Materials 2019, 12, 1019. [Google Scholar] [CrossRef]
- Lapeer, R.; Gasson, P.; Karri, V. Simulating plastic surgery: From human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog. Biophys. Mol. Biol. 2010, 103, 208–216. [Google Scholar] [CrossRef]
- Gendy, A.; Saleeb, A. Nonlinear material parameter estimation for characterizing hyper elastic large strain models. Comput. Mech. 2000, 25, 66–77. [Google Scholar] [CrossRef]
- Ogden, R.W.; Saccomandi, G.; Sgura, I. Fitting hyperelastic models to experimental data. Comput. Mech. 2004, 34, 484–502. [Google Scholar] [CrossRef]
- Martins, P.; Natal Jorge, R.; Ferreira, A. A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 2006, 42, 135–147. [Google Scholar] [CrossRef]
- Fernández, J.; López-Campos, J.; Segade, A.; Vilán, J. A genetic algorithm for the characterization of hyperelastic materials. Appl. Math. Comput. 2018, 329, 239–250. [Google Scholar] [CrossRef]
- López-Campos, J.; Ferreira, J.; Segade, A.; Fernández, J.; Natal, R. Characterization of hyperelastic and damage behavior of tendons. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 213–223. [Google Scholar] [CrossRef]
- Ramzanpour, M.; Hosseini-Farid, M.; Ziejewski, M.; Karami, G. A constrained particle swarm optimization algorithm for hyperelastic and visco-hyperelastic characterization of soft biological tissues. Int. J. Comput. Methods Eng. Sci. Mech. 2020, 21, 169–184. [Google Scholar] [CrossRef]
- Mansouri, M.R.; Darijani, H.; Baghani, M. On the correlation of FEM and experiments for hyperelastic elastomers. Exp. Mech. 2016, 57, 195–206. [Google Scholar] [CrossRef]
- Helfenstein, J.; Jabareen, M.; Mazza, E.; Govindjee, S. On non-physical response in models for fiber-reinforced hyperelastic materials. Int. J. Solids Struct. 2010, 27, 2056–2061. [Google Scholar] [CrossRef]
- Latorre, M.; Montáns, F.J. What-you-prescribe-is-what-you-get orthotropic hyperelasticity. Comput. Mech. 2014, 53, 1279–1298. [Google Scholar] [CrossRef]
- Marckmann, G.; Verron, E. Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 2006, 79, 835–858. [Google Scholar] [CrossRef]
- Bonet, J.; Wood, R.D. Nonlinear Continuum Mechanics for Finite Element Analysis; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Spencer, A.J.M. Constitutive theory for strongly anisotropic solids. In Continuum Theory of the Mechanics of Fibre-Reinforced Composites; Springer: Nottingham, UK, 1984; pp. 1–32. [Google Scholar]
- Shariff, M.; Bustamante, R. On the independence of strain invariants of two preferred direction nonlinear elasticity. Int. J. Eng. Sci. 2015, 97, 18–25. [Google Scholar] [CrossRef]
- Lin, D.; Yin, F. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech Eng. 1998, 120, 504–517. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. Constitutive modelling of arteries. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1551–1597. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Gasser, T.C.; Ogden, R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids 2000, 61, 1–48. [Google Scholar]
- Ogden, R.W. Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In Biomechanics of Soft Tissue in Cardiovascular Systems; Springer: Glasgow, UK, 2003; pp. 65–108. [Google Scholar]
- Walton, J.R.; Wilber, J.P. Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int. J. Non-Linear Mech. 2003, 38, 441–455. [Google Scholar] [CrossRef]
- Rivera, E.; García-Herrera, C.; González-Candia, A.; Celentano, D.J.; Herrera, E. Effects of melatonin on the passive mechanical response of arteries in chronic hypoxic newborn lambs. J. Mech. Behav. Biomed. Mater. 2020, 112, 104013. [Google Scholar] [CrossRef]
- Atienza, J.M.; Guinea, G.V.; Rojo, F.J.; Burgos, R.J.; García-Montero, C.; Goicolea, F.J.; Aragoncillo, P.; Elices, M. The Influence of Pressure and Temperature on the Behavior of the Human Aorta and Carotid Arteries. Rev. Esp. Cardiol. 2007, 3, 259–267. [Google Scholar] [CrossRef]
- Yang, J.M.; Chen, Y.P.; Horng, J.T.; Kao, C.Y. Applying family competition to evolution strategies for constrained optimization. In Proceedings of the International Conference on Evolutionary Programming, Indianapolis, IN, USA, 13–16 April 1997; pp. 201–211. [Google Scholar]
- Mezura-Montes, E.; Coello, C.A.C. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 2008, 37, 443–473. [Google Scholar] [CrossRef]
- Macías, D.; Vial, A.; Barchiesi, D. Application of evolution strategies for the solution of an inverse problem in near-field optics. JOSA A 2004, 21, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Beyer, H.G. The Theory of Evolution Strategies; Springer Science & Business Media: Dortmund, Germany, 2001. [Google Scholar]
- García-Herrera, C.M.; Celentano, D.J.; Cruchaga, M.A.; Rojo, F.J.; Atienza, J.M.; V, G.G.; Goicolea, J.M. Mechanical characterisation of the human thoracic descending aorta: Experiments and modelling. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 185–193. [Google Scholar] [CrossRef]
Parameters | Known Solution | Lower Limit | Upper Limit |
---|---|---|---|
° | 90 | ||
Generations | 150 | Population | 1140 |
Parameters | ES Elitist | ES Non-Elitist | ||
---|---|---|---|---|
Average | 95% IC | Average | 95% IC | |
[kPa] | ||||
[kPa] | ||||
° | ||||
Objective Function |
Parameters | [kPa] | [kPa] | ° | Objective Function | |||
---|---|---|---|---|---|---|---|
García et al. | 0 | ||||||
Es Elitist | Av. | ||||||
IC 95% |
Parameters | Lower Boundary | Upper Boundary |
---|---|---|
[kPa] | 10.0 | |
[kPa] | 0.00 | |
0.00 | 6.00 | |
0.00 | 1/3 | |
° | 0.00 | 90.0 |
Generations | 100 | |
Population | 200 |
Standarized Quadratic Errors | CN | |
---|---|---|
Without Stabilization | With Stabilization | |
Presurization | ||
Tensile test longitudinal | ||
Tensile test circumferential |
Parameters | [kPa] | [kPa] | ° | Computing Time [h] | ||
---|---|---|---|---|---|---|
Without Stabilization | 10.015 | 20.315 | 0.17086 | 45.83 | 12.4 | |
With Stabilization | 18.668 | 24.905 | 0.2912 | 0.1367 | 46.44 | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canales, C.; García-Herrera, C.; Rivera, E.; Macías, D.; Celentano, D. Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies. Mathematics 2023, 11, 922. https://doi.org/10.3390/math11040922
Canales C, García-Herrera C, Rivera E, Macías D, Celentano D. Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies. Mathematics. 2023; 11(4):922. https://doi.org/10.3390/math11040922
Chicago/Turabian StyleCanales, Claudio, Claudio García-Herrera, Eugenio Rivera, Demetrio Macías, and Diego Celentano. 2023. "Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies" Mathematics 11, no. 4: 922. https://doi.org/10.3390/math11040922
APA StyleCanales, C., García-Herrera, C., Rivera, E., Macías, D., & Celentano, D. (2023). Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies. Mathematics, 11(4), 922. https://doi.org/10.3390/math11040922