Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems
Abstract
:1. Introduction
- In this paper, an effective method called mAHA is proposed.
- The proposed mAHA introduces the mechanisms of genetic operators (crossover and mutation selection) to enhance AHA’s performance in increasing the diversity of the population and avoiding local searches.
- The proposed mAHA was adopted to address the ten global optimization tasks from the CEC’20 test suite and was compared with other optimization algorithms and the original AHA algorithm.
- For the first time, a mAHA was used in the global MPPT optimization of PV systems with a sensor.
- The superiority of the proposed MPPT technique has been demonstrated.
2. Artificial Hummingbird Algorithm
Algorithm 1: Structure of AHA. |
Initialization While stop criterion is not satisfied Guided foraging Territorial foraging Migration foraging End |
2.1. The Mathematical Model of AHA Algorithm
2.1.1. Initialization Phase
2.1.2. Guided Foraging Phase
Algorithm 2: Guided foraging strategy of AHA. |
2.1.3. Territorial Foraging Phase
Algorithm 3: Territorial foraging strategy of AHA. |
For th hummingbird from 1 to |
Perform Equation |
If |
For th food source from 1 to |
Visit_table Visit_table |
End |
For th food source from 1 to |
Visit_table max Visit_table |
End |
Else |
For th food source from 1 to |
Visit_table Visit_table |
End |
End |
End |
2.1.4. Migration Foraging Phase
Algorithm 4: Migration foraging strategy of AHA. |
If |
Perform Equation (11) |
For th food source from 1 to |
Visit_table wor, Visit_table wor, |
End |
For th food source from 1 to |
Visit_table , worVisit_table |
End |
End |
3. The Proposed mAHA Algorithm
3.1. Shortcomings of the Original AHA
3.2. Architecture of the Proposed mAHA Algorithm
Genetic Operators
Algorithm 5: The proposed mAHA. |
1- Initialization phase based on Equations (1) and (2) 2- While stop criterion is not satisfied 3- Calculate the fitness of all individuals the best search agent. 4- Calculate guided foraging using Algorithm 2 5- Calculate territorial foraging using Algorithm 3 6- Calculate migration foraging using Algorithm 4 7- 8- End While 9- Return the best criteria |
4. Experimental Stage 1: Statistical Results for CEC’20 Test Suite
4.1. Statistical Results Analysis
4.2. Convergence Performance Analysis
4.3. Boxplot Behavior Analysis
4.4. Qualitative Metrics Analysis
- (1)
- Search history: The second column in Figure 3 shows the agents’ search history from the beginning to the last iteration. Furthermore, the problem search space is formed on a counter line, it reflects the gradient from blue to red color lines indicating a higher fitness value. The introduced mAHA approach can reach the positions with the higher fitness values, according to the search history.
- (2)
- Average fitness history: The third column in Figure 3 demonstrates the average fitness value. From this figure, the agents’ overall behavior is represented by the fitness history as well as their contribution in the optimization process.
- (3)
- Accordingly, the performance of mAHA approach is assessed against the other competitors on CEC’20 test suite. The performance of the proposed mAHA is evaluated using both quantitative and qualitative indicators for mAHA. According to Table 1, Table 2 and Table 3, the proposed mAHA method has reached near/optimal results for convergence and the highest fitness value. The graphical boxplot and minimum convergence curve are shown in Figure 1 and Figure 2 respectively. These graphical representations demonstrate the stable performance of the proposed mAHA algorithm as introduced in Figure 3, which indicate that the introduced method is dependable for a real situation and are drawn from the test metrics.
5. Stage 2: Maximum Power Point Tracking
6. Discussion
- The proposed mAHA was used for the first time to find the global maximum power point (MPP), includes 36 photovoltaic panels forming 6 arrays, DC-DC converter, controller, and 480 V battery bank.
- Table 6 shows the results of the analysis of variance (ANOVA), and Figure 8 shows the corresponding ranking. As shown in Figure 8, Figure 9, Figure 10 and Figure 11, the mAHA can outperform the other commonly used methods. The mAHA has the smallest range of variance and the largest mean fitness (maximization problem), indicating its resilience and accuracy.
- The obtained results show the superiority of the proposed single sensor-based MPPT method for PV systems. The scalability analysis demonstrated the robustness and flexibility of the proposed mAHA method.
- Despite eminent applications, AHA is still attributed for its slow convergence and stagnancy issues when employed on high-dimensional problems.
- The obtained solutions generated by mAHA may change each time it is run because it is an optimization strategy based on randomization. As a result, there is no assurance that the features subset chosen in one run will be present in another.
- The performance of the proposed mAHA method on complex and high dimensional problems may be worse according to the several mutations.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houssein, E.H.; Mahdy, M.A.; Shebl, D.; Manzoor, A.; Sarkar, R.; Mohamed, W.M. An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst. Appl. 2022, 187, 115870. [Google Scholar] [CrossRef]
- Singh, N.; Houssein, E.H.; Singh, S.; Dhiman, G. Hssahho: A novel hybrid salp swarm-harris hawks optimization algorithm for complex engineering problems. J. Ambient. Intell. Humaniz. Comput. 2022, 97, 1–37. [Google Scholar]
- Houssein, E.H.; Gad, A.G.; Wazery, Y.M.; Suganthan, P.N. Task scheduling in cloud computing based on meta-heuristics: Review, taxonomy, open challenges, and future trends. Swarm Evol. Comput. 2021, 62, 100841. [Google Scholar] [CrossRef]
- Houssein, E.H.; Mahdy, M.A.; Blondin, M.J.; Shebl, D.; Mohamed, W.M. Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 2021, 174, 114689. [Google Scholar] [CrossRef]
- Houssein, E.H.; Mahdy, M.A.; Fathy, A.; Rezk, H. A modified Marine Predator Algorithm based on opposition based learning for tracking the global MPP of shaded PV system. Expert Syst. Appl. 2021, 183, 115253. [Google Scholar] [CrossRef]
- Lu, S.; Wang, C.; Fan, Y.; Lin, B. Robustness of building energy optimization with uncertainties using deterministic and stochastic methods: Analysis of two forms. Build. Environ. 2021, 205, 108185. [Google Scholar] [CrossRef]
- Forrest, S. Genetic algorithms. ACM Comput. Surv. 1996, 28, 77–80. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Teodorović, D. Bee colony optimization (BCO). In Innovations in Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; pp. 39–60. [Google Scholar]
- Storn, R.; Kenneth, P. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Houssein, E.H.; Abdelkareem, D.A.; Emam, M.M.; Hameed, M.A.; Younan, M. An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm. Comput. Biol. Med. 2022, 149, 106075. [Google Scholar] [CrossRef]
- Houssein, E.H.; Emam, M.M.; Ali, A.A.; Suganthan, P.N. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Syst. Appl. 2021, 167, 114161. [Google Scholar] [CrossRef]
- Houssein, E.H.; Emam, M.M.; Ali, A.A. Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images. Neural Comput. Appl. 2021, 33, 16899–16919. [Google Scholar] [CrossRef] [PubMed]
- Houssein, E.H.; Abohashima, Z.; Elhoseny, M.; Mohamed, W.M. Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images. J. Comput. Des. Eng. 2022, 9, 343–363. [Google Scholar] [CrossRef]
- Houssein, E.H.; Oliva, D.; Çelik, E.; Emam, M.M.; Ghoniem, R.M. Boosted sooty tern optimization algorithm for global optimization and feature selection. Expert Syst. Appl. 2023, 213, 119015. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hosney, M.E.; Mohamed, W.M.; Ali, A.A.; Younis, E.M. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Emam, M.M.; Houssein, E.H.; Ghoniem, R.M. A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Comput. Biol. Med. 2023, 152, 106404. [Google Scholar] [CrossRef] [PubMed]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Houssein, E.H.; Çelik, E.; Mahdy, M.A.; Ghoniem, R.M. Self-adaptive Equilibrium Optimizer for solving global, combinatorial, engineering, and Multi-Objective problems. Expert Syst. Appl. 2022, 195, 116552. [Google Scholar] [CrossRef]
- Houssein, E.H.; Saad, M.R.; Hashim, F.A.; Shaban, H.; Hassaballah, M. Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 94, 103731. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Andrew, L. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Krupnov, Y.A.; Krasilnikova, V.G.; Kiselev, V.; Yashchenko, A.V. The Contribution of Sustainable and Clean Energy to the Strengthening of Energy Security. Front. Environ. Sci. 2022, 10, 2505. [Google Scholar] [CrossRef]
- Zsiborács, H.; Pintér, G.; Vincze, A.; Baranyai, N.H.; Mayer, M.J. The reliability of photovoltaic power generation scheduling in seventeen European countries. Energy Convers. Manag. 2022, 260, 115641. [Google Scholar] [CrossRef]
- Karmouni, H.; Chouiekh, M.; Motahhir, S.; Qjidaa, H.; Jamil, M.O.; Sayyouri, M. A fast and accurate sine-cosine MPPT algorithm under partial shading with implementation using arduino board. Clean. Eng. Technol. 2022, 9, 100535. [Google Scholar] [CrossRef]
- Bhukya, L.; Kedika, N.R.; Salkuti, S.R. Enhanced Maximum Power Point Techniques for Solar Photovoltaic System under Uniform Insolation and Partial Shading Conditions: A Review. Algorithms 2022, 15, 365. [Google Scholar] [CrossRef]
- Boghdady, T.A.; Kotb, Y.E.; Aljumah, A.; Sayed, M.M. Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load. Sustainability 2022, 14, 2937. [Google Scholar] [CrossRef]
- Zafar, M.H.; Khan, N.M.; Mirza, A.F.; Mansoor, M. Bio-inspired optimization algorithms based maximum power point tracking technique for photovoltaic systems under partial shading and complex partial shading conditions. J. Clean. Prod. 2021, 309, 127279. [Google Scholar] [CrossRef]
- Zafar, M.H.; Khan, N.M.; Mirza, A.F.; Mansoor, M.; Akhtar, N.; Qadir, M.U.; Khan, N.A.; Moosavi, S.K.R. A novel meta-heuristic optimization algorithm based MPPT control technique for PV systems under complex partial shading condition. Sustain. Energy Technol. Assess. 2021, 47, 101367. [Google Scholar]
- Zafar, M.H.; Al-shahrani, T.; Khan, N.M.; Mirza, A.F.; Mansoor, M.; Qadir, M.U.; Khan, M.I.; Naqvi, R.A. Group teaching optimization algorithm based MPPT control of PV systems under partial shading and complex partial shading. Electronics 2020, 9, 1962. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Chen, X.; Ye, C.-E. A hybrid maximum power point tracking approach for photovoltaic systems under partial shading conditions using a modified genetic algorithm and the firefly algorithm. Int. J. Photoenergy 2018, 7598653. [Google Scholar] [CrossRef] [Green Version]
- El-Helw, H.M.; Magdy, A.; Marei, M.I. A Hybrid Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Arrays. IEEE Access 2017, 5, 11900–11908. [Google Scholar] [CrossRef]
- El-Shafy, K.A.; Nafeh, A. An effective and safe charging algorithm for lead-acid batteries in PV systems. Int. J. Energy Res. 2011, 35, 733–740. [Google Scholar]
- Camilo, J.C.; Guedes, T.; Fernandes, D.A.; Melo, J.; Costa, F.; Filho, A.J.S. A maximum power point tracking for photovoltaic systems based on Monod equation. Renew. Energy 2019, 130, 428–438. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, K.; Kang, L.; Peng, F.; Wang, L.; Pang, J. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 2020, 260, 114169. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Biswas; Subhodip; Saha, D.; De, S.; Cobb, A.D.; Das, S.; Jalaian, B.A. Improving differential evolution through Bayesian hyperparameter optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 832–840. [Google Scholar]
- Saha, D.; Sallam, K.M.; De, S.; Mohamed, A.W. Framework of Ensemble Parmeter Adapted Evolutionary Algorithm for Solving Constrained Optimization Problems. Preprints 2022. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Agrawal, P.; Sallam, K.M.; Mohamed, A.K. Gaining-sharing knowledge based algorithm with adaptive parameters hybrid with imode algorithm for solving cec 2021 benchmark problems. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 841–848. [Google Scholar]
- Houssein, E.H.; Rezk, H.; Fathy, A.; Mahdy, M.A.; Nassef, A.M. A modified adaptive guided differential evolution algorithm applied to engineering applications. Eng. Appl. Artif. Intell. 2022, 113, 104920. [Google Scholar] [CrossRef]
Functions | SMA | GWO | WOA | HHO | AHA | mAHA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | |
F1 | 9.34 × 103 | 3.93 × 103 | 3.80 × 107 | 1.08 × 108 | 2.75 × 106 | 5.04 × 106 | 6.14 × 105 | 2.58 × 105 | 5.64 × 101 | 5.45E × 101 | 1.14 × 10−1 | 5.49 × 101 |
F2 | 1.58 × 103 | 1.58 × 102 | 1.60 × 103 | 1.74 × 102 | 2.26 × 103 | 3.85 × 102 | 2.03 × 103 | 2.69 × 102 | 1.46 × 101 | 4.19 × 101 | 1.24 × 101 | 1.95 × 101 |
F3 | 7.24 × 102 | 4.89 × 10 | 7.32 × 102 | 1.27 × 101 | 7.66 × 102 | 1.47 × 101 | 7.89 × 102 | 1.93 × 101 | 5.61 × 101 | 1.56 × 101 | 1.03 × 101 | 1.18 × 101 |
F4 | 1.90 × 103 | 3.95 × 10−1 | 1.90 × 103 | 2.46 × 101 | 1.91 × 103 | 2.77 × 101 | 1.91 × 103 | 2.75 × 101 | 3.77 × 101 | 4.77 × 10−1 | 4.29 × 101 | 5.12 × 10−2 |
F5 | 7.14 × 103 | 5.13 × 103 | 8.17 × 103 | 5.51 × 103 | 2.15 × 105 | 2.38 × 105 | 6.00 × 104 | 4.42 × 104 | 2.25 × 101 | 4.32 × 101 | 1.31 × 101 | 4.32 × 101 |
F6 | 1.60 × 103 | 3.08 × 10−1 | 1.61 × 103 | 2.41 × 101 | 1.61 × 103 | 8.51 × 101 | 1.61 × 103 | 9.13 × 101 | 1.00 × 101 | 5.20 × 101 | 1.75 × 101 | 3.55 × 101 |
F7 | 2.52 × 103 | 3.31 × 102 | 8.00 × 103 | 4.41 × 103 | 5.66 × 104 | 5.03 × 104 | 2.03 × 104 | 2.66 × 104 | 1.38 × 101 | 4.83 × 101 | 1.19 × 101 | 3.06 × 101 |
F8 | 2.31 × 103 | 2.30 × 103 | 2.31 × 103 | 2.30 × 103 | 2.37 × 103 | 2.31 × 103 | 2.31 × 103 | 2.31 × 103 | 6.59 × 101 | 4.50 × 101 | 3.85 × 101 | 4.44 × 101 |
F9 | 2.76 × 103 | 6.12 × 10 | 2.74 × 103 | 1.15 × 101 | 2.76 × 103 | 5.75 × 101 | 2.81 × 103 | 1.24 × 102 | 1.38 × 101 | 3.27 × 101 | 5.62 × 101 | 2.86 × 101 |
F10 | 2.93 × 103 | 2.61 × 101 | 2.94 × 103 | 1.49 × 101 | 2.95 × 103 | 1.18 × 101 | 2.92 × 103 | 2.44 × 101 | 2.48 × 101 | 2.17 × 101 | 1.32 × 101 | 1.16 × 101 |
Friedman | 6.2 | 2.3 | 4.7 | 6.8 | 3.1 | 1.2 | ||||||
Rank | 5 | 2 | 4 | 6 | 3 | 1 |
Functions | SMA | GWO | WOA | HHO | AHA | mAHA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | |
F1 | 9.54 × 103 | 3.96 × 103 | 3.83 × 107 | 1.09 × 108 | 2.78 × 106 | 5.09 × 106 | 6.18 × 105 | 2.65 × 105 | 5.74 × 101 | 5.55 × 101 | 1.24 × 10−1 | 5.52 × 101 |
F2 | 1.70 × 103 | 1.61 × 102 | 1.65 × 103 | 1.77 × 102 | 2.29 × 103 | 3.89 × 102 | 2.08 × 103 | 2.78 × 102 | 1.56 × 101 | 4.29 × 101 | 1.29 × 101 | 2.05 × 101 |
F3 | 7.44 × 102 | 4.92 × 101 | 7.36 × 102 | 1.29 × 101 | 7.68 × 102 | 1.49 × 101 | 7.92 × 102 | 2.03 × 101 | 5.68 × 101 | 1.66 × 101 | 1.09 × 101 | 1.28 × 101 |
F4 | 2.10 × 103 | 3.98 × 10−1 | 1.93 × 103 | 2.48 × 101 | 1.96 × 103 | 2.79 × 101 | 1.98 × 103 | 2.85 × 101 | 3.78 × 101 | 4.80 × 10−1 | 4.33 × 101 | 5.52 × 10−2 |
F5 | 7.34 × 103 | 5.18 × 103 | 8.19 × 103 | 5.56 × 103 | 2.18 × 105 | 2.40 × 105 | 6.09 × 104 | 4.47 × 104 | 2.28 × 101 | 4.42 × 101 | 1.38 × 101 | 4.42 × 101 |
F6 | 1.80 × 103 | 3.128 × 10−1 | 1.66 × 103 | 2.48 × 101 | 1.66 × 103 | 8.58 × 101 | 1.69 × 103 | 9.19 × 101 | 1.04 × 101 | 5.33 × 101 | 1.79 × 101 | 3.65 × 101 |
F7 | 2.72 × 103 | 3.378 × 102 | 8.03 × 103 | 4.46 × 103 | 5.68 × 104 | 5.10 × 104 | 2.08 × 104 | 2.65 × 104 | 1.40 × 101 | 4.90 × 101 | 1.28 × 101 | 3.10 × 101 |
F8 | 2.51 × 103 | 2.34 × 103 | 2.36 × 103 | 2.36 × 103 | 2.39 × 103 | 2.30 × 103 | 2.39 × 103 | 2.37 × 103 | 6.62 × 101 | 4.62 × 101 | 3.99 × 101 | 4.45 × 101 |
F9 | 2.90 × 103 | 6.188 × 101 | 2.77 × 103 | 1.18 × 101 | 2.79 × 103 | 5.85 × 101 | 2.91 × 103 | 1.29 × 102 | 1.43 × 101 | 3.38 × 101 | 5.77 × 101 | 2.90 × 101 |
F10 | 3.13 × 103 | 2.68 × 101 | 2.97 × 103 | 1.52 × 101 | 3.09 × 103 | 1.20 × 101 | 2.99 × 103 | 2.49 × 101 | 2.52 × 101 | 2.29 × 101 | 1.44 × 101 | 1.30 × 101 |
Friedman | 6.4 | 2.6 | 4.9 | 7.1 | 3.4 | 1.4 | ||||||
Rank | 5 | 2 | 4 | 6 | 3 | 1 |
Functions | SMA | GWO | WOA | HHO | AHA | mAHA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dim 10 | Dim 20 | Dim 10 | Dim 20 | Dim 10 | Dim 20 | Dim 10 | Dim 20 | Dim 10 | Dim 20 | Dim 10 | Dim 20 | |
F1 | 6.24 × 101 | 6.63 × 101 | 6.40 × 101 | 6.77 × 101 | 6.20 × 101 | 6.34 × 101 | 6.24 × 101 | 6.48 × 101 | 6.25 × 101 | 6.50 × 101 | 6.35 × 101 | 6.98 × 101 |
F2 | 3.38 × 101 | 3.50 × 101 | 3.40 × 101 | 3.60 × 101 | 3.30 × 101 | 3.55 × 101 | 3.28 × 101 | 3.45 × 101 | 3.41 × 101 | 3.55 × 101 | 3.56 × 101 | 3.70 × 101 |
F3 | 3.98 × 101 | 4.10 × 101 | 4.08 × 101 | 4.20 × 101 | 4.02 × 101 | 4.30 × 101 | 4.03 × 101 | 4.20 × 101 | 4.11 × 101 | 4.40 × 101 | 4.20 × 101 | 4.50 × 101 |
F4 | 7.30 × 10−1 | 7.40 × 10−1 | 7.20 × 10−1 | 7.50 × 10−1 | 7.10 × 10−1 | 7.40 × 10−1 | 7.15 × 10−1 | 7.40 × 10−1 | 7.29 × 10−1 | 7.40 × 10−1 | 7.40 × 10−1 | 7.60 × 10−1 |
F5 | 4.24 × 101 | 4.43 × 101 | 4.34 × 101 | 4.54 × 101 | 4.20 × 101 | 4.42 × 101 | 4.20 × 101 | 4.44 × 101 | 4.34 × 101 | 4.54 × 101 | 4.40 × 101 | 4.64 × 101 |
F6 | 8.07 × 101 | 8.17 × 101 | 8.27 × 101 | 8.47 × 101 | 8.17 × 101 | 8.27 × 101 | 8.02 × 101 | 8.19 × 101 | 8.20 × 101 | 8.47 × 101 | 8.47 × 101 | 8.67 × 101 |
F7 | 4.34 × 101 | 4.54 × 101 | 4.37 × 101 | 4.57 × 101 | 4.30 × 101 | 4.44 × 101 | 4.30 × 101 | 4.54 × 101 | 4.37 × 101 | 4.50 × 101 | 4.50 × 101 | 4.74 × 101 |
F8 | 4.18 × 101 | 4.30 × 101 | 4.20 × 101 | 4.34 × 101 | 4.24 × 101 | 4.44 × 101 | 4.29 × 101 | 4.44 × 101 | 4.30 × 101 | 4.48 × 101 | 4.40 × 101 | 4.60 × 101 |
F9 | 8.40 × 101 | 8.60 × 101 | 8.43 × 101 | 8.67 × 101 | 8.47 × 101 | 8.70 × 101 | 8.35 × 101 | 8.57 × 101 | 8.45 × 101 | 8.70 × 101 | 8.55 × 101 | 8.77 × 101 |
F10 | 3.71 × 101 | 3.81 × 101 | 3.69 × 101 | 3.82 × 101 | 3.66 × 101 | 3.81 × 101 | 3.61 × 101 | 3.77 × 101 | 3.69 × 101 | 3.83 × 101 | 3.74 × 101 | 3.85 × 101 |
Item | Specification |
---|---|
Maximum power of the panel | 200 W |
PV current at MPP | 7.61 A |
PV voltage at MPP | 26.3 V |
No. of arrays | 6 |
No. of series PV panels per array | 3 |
No. of strings in array | 2 |
Battery bank voltage | 480 V |
Irradiance Intensity (W/m2) Six Series-Connected PV Arrays | Data at MPP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pattern | Array 1 | Array 2 | Array 3 | Array 4 | Array 5 | Array 6 | Current (A) | Voltage (V) | Power (W) | Duty |
1st scenario | 1000 | 900 | 700 | 400 | 300 | 200 | 11.13 | 245 | 2725.9 | 0.4896 |
2nd scenario | 900 | 600 | 500 | 400 | 300 | 200 | 6.38 | 332.28 | 2119.4 | 0.3077 |
SMA | HHO | GWO | WOA | AHA | mAHA | |
---|---|---|---|---|---|---|
1st Scenario | ||||||
Best cost function | 5.678486 | 5.678486 | 5.678486 | 5.678486 | 5.678486 | 5.678486 |
Maximum PV power (W) | 2725.673 | 2725.673 | 2725.673 | 2725.673 | 2725.673 | 2725.673 |
Worst | 4.307119 | 4.555636 | 4.307109 | 4.307124 | 4.30633 | 5.659904 |
Mean | 5.632443 | 5.603838 | 5.412551 | 5.63269 | 5.30468 | 5.676989 |
Average PV power (W) | 2067.417 | 2186.705 | 2067.413 | 2067.419 | 2067.039 | 2716.754 |
STD | 0.246108 | 0.277208 | 0.482421 | 0.246152 | 0.516302 | 0.004308 |
Median | 5.678466 | 5.678475 | 5.67825 | 5.67848 | 5.659086 | 5.678435 |
Variance | 0.060569 | 0.076844 | 0.23273 | 0.060591 | 0.266568 | 1.86 × 10−5 |
Average time (s) | 69.39628 | 169.6144 | 70.38237 | 70.86129 | 74.29785 | 73.42117 |
2md Scenario | ||||||
Best cost function | 4.415491 | 4.415491 | 4.415491 | 4.415491 | 4.415491 | 4.415491 |
Maximum PV power (W) | 2027.256 | 2027.74 | 2027.735 | 2027.742 | 2017.267 | 2117.477 |
Worst | 4.223449 | 4.224458 | 4.224447 | 4.224463 | 4.202639 | 4.41141 |
Mean | 4.363836 | 4.402683 | 4.383512 | 4.40273 | 4.37282 | 4.415039 |
Average PV power (W) | 2094.641 | 2113.288 | 2104.086 | 2113.31 | 2098.954 | 2119.219 |
STD | 0.08421 | 0.047632 | 0.071131 | 0.047644 | 0.076916 | 0.000996 |
Median | 4.415443 | 4.415484 | 4.415365 | 4.415483 | 4.41405 | 4.415467 |
Variance | 0.007091 | 0.002269 | 0.00506 | 0.00227 | 0.005916 | 9.92 × 10−7 |
Average time (s) | 69.3757 | 159.2509 | 69.37294 | 69.5756 | 73.37224 | 73.80433 |
SMA | HHO | GWO | WOA | AHA | mAHA | SMA | HHO | GWO | WOA | AHA | mAHA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Shadow Scenario | 2nd Shadow Scenario | |||||||||||
1 | 5.6785 | 5.6761 | 5.671 | 5.6784 | 5.6543 | 5.6785 | 4.4154 | 4.4155 | 4.2245 | 4.4155 | 4.239 | 4.4138 |
2 | 4.3071 | 5.6785 | 5.6785 | 5.6785 | 5.6785 | 5.6783 | 4.4154 | 4.4155 | 4.415 | 4.4155 | 4.4155 | 4.4155 |
3 | 5.6767 | 5.6674 | 5.6784 | 4.3071 | 5.6785 | 5.6785 | 4.4154 | 4.4153 | 4.4155 | 4.4155 | 4.4155 | 4.4155 |
4 | 5.6785 | 5.6785 | 5.6785 | 5.6785 | 5.6781 | 5.6785 | 4.4155 | 4.4154 | 4.4155 | 4.2245 | 4.4132 | 4.4151 |
5 | 5.6782 | 5.6784 | 4.3071 | 5.6785 | 4.5697 | 5.6771 | 4.2244 | 4.4155 | 4.4154 | 4.4155 | 4.2242 | 4.4155 |
6 | 5.6783 | 5.6778 | 5.6718 | 5.6785 | 5.6765 | 5.6777 | 4.4155 | 4.4155 | 4.4155 | 4.4154 | 4.4155 | 4.4155 |
7 | 5.6781 | 5.6785 | 5.6784 | 5.6785 | 5.6783 | 5.6783 | 4.4155 | 4.4155 | 4.4154 | 4.4155 | 4.4154 | 4.4155 |
8 | 5.6731 | 5.6785 | 5.6771 | 5.6785 | 5.6783 | 5.6784 | 4.4155 | 4.4155 | 4.4153 | 4.4154 | 4.4152 | 4.4155 |
9 | 5.6785 | 5.6785 | 5.6785 | 5.6785 | 4.4733 | 5.6785 | 4.4155 | 4.4155 | 4.2245 | 4.2245 | 4.4154 | 4.4154 |
10 | 5.6785 | 5.6785 | 4.5696 | 5.6785 | 5.678 | 5.6784 | 4.4155 | 4.4155 | 4.4155 | 4.4155 | 4.4155 | 4.4155 |
11 | 5.6782 | 5.6785 | 4.5697 | 5.6785 | 5.6784 | 5.6785 | 4.4155 | 4.2245 | 4.4144 | 4.4155 | 4.4155 | 4.4143 |
12 | 5.6785 | 5.6785 | 5.6782 | 5.6785 | 5.6785 | 5.6784 | 4.4153 | 4.4155 | 4.4154 | 4.4155 | 4.4137 | 4.4155 |
13 | 5.6785 | 5.6784 | 5.6785 | 5.6785 | 4.5647 | 5.6783 | 4.4153 | 4.4155 | 4.4154 | 4.4155 | 4.4118 | 4.4155 |
14 | 5.6785 | 5.6785 | 4.5697 | 5.6784 | 4.5697 | 5.6599 | 4.4155 | 4.2245 | 4.415 | 4.4155 | 4.4154 | 4.4155 |
15 | 5.6785 | 4.5556 | 5.6764 | 5.6785 | 5.6776 | 5.6785 | 4.2245 | 4.4155 | 4.4152 | 4.4154 | 4.4154 | 4.4155 |
16 | 5.6785 | 5.6785 | 5.6784 | 5.6785 | 5.6578 | 5.6749 | 4.2244 | 4.4155 | 4.4151 | 4.4155 | 4.4144 | 4.4114 |
17 | 5.6785 | 5.6785 | 5.6783 | 5.6785 | 5.6604 | 5.6784 | 4.2244 | 4.4146 | 4.4155 | 4.4155 | 4.4154 | 4.4155 |
18 | 5.6784 | 5.6785 | 5.6783 | 5.6785 | 4.5697 | 5.6784 | 4.4155 | 4.4155 | 4.4155 | 4.4155 | 4.4119 | 4.4154 |
19 | 5.6785 | 5.6785 | 5.6759 | 5.6785 | 4.3063 | 5.6785 | 4.3963 | 4.4152 | 4.4155 | 4.4155 | 4.4153 | 4.4154 |
20 | 5.6784 | 5.6785 | 5.6784 | 5.6766 | 5.3566 | 5.6785 | 4.4152 | 4.4154 | 4.4152 | 4.4155 | 4.3922 | 4.4119 |
21 | 5.6785 | 5.6784 | 5.6785 | 5.6785 | 5.6146 | 5.6767 | 4.2243 | 4.4155 | 4.2244 | 4.4155 | 4.2095 | 4.4155 |
22 | 5.6785 | 5.678 | 5.6783 | 5.6782 | 5.5155 | 5.6785 | 4.4155 | 4.4154 | 4.4152 | 4.4155 | 4.4084 | 4.4155 |
23 | 5.6783 | 5.6783 | 4.6416 | 5.6785 | 4.5661 | 5.6785 | 4.2234 | 4.4153 | 4.2245 | 4.4154 | 4.4155 | 4.4155 |
24 | 5.6785 | 5.6784 | 5.6778 | 5.6784 | 5.6785 | 5.6785 | 4.4155 | 4.4155 | 4.4155 | 4.4154 | 4.2245 | 4.4154 |
25 | 5.6785 | 4.5778 | 5.6783 | 5.6785 | 5.6722 | 5.6784 | 4.4155 | 4.4155 | 4.4155 | 4.4153 | 4.406 | 4.4155 |
26 | 5.678 | 5.6785 | 5.6784 | 5.6785 | 5.6785 | 5.6784 | 4.4155 | 4.4153 | 4.4155 | 4.4155 | 4.2026 | 4.4146 |
27 | 5.6785 | 5.6785 | 5.6785 | 5.6785 | 5.4584 | 5.6624 | 4.2245 | 4.4155 | 4.4155 | 4.4155 | 4.3614 | 4.4155 |
28 | 5.6778 | 5.6782 | 4.5696 | 5.6785 | 5.6741 | 5.6782 | 4.2244 | 4.4155 | 4.2245 | 4.4155 | 4.4113 | 4.4155 |
29 | 5.6785 | 5.6781 | 5.6751 | 5.6785 | 4.5697 | 5.6785 | 4.4155 | 4.4152 | 4.4155 | 4.4155 | 4.4154 | 4.4152 |
30 | 5.6784 | 5.6785 | 4.5697 | 5.6784 | 4.5498 | 5.677 | 4.4155 | 4.4155 | 4.4154 | 4.4155 | 4.2245 | 4.4146 |
Source | df | SS | MS | F | p-Value |
---|---|---|---|---|---|
Columns | 5 | 3.3452 | 0.6690 | 5.56 | 8.8039 × 10−5 |
Error | 174 | 20.9198 | 0.1202 | ||
Total | 179 | 24.2651 |
Source | df | SS | MS | F | p-Value |
---|---|---|---|---|---|
Columns | 5 | 0.0592 | 0.0118 | 3.04 | 0.0118 |
Error | 174 | 0.6782 | 0.0039 | ||
Total | 179 | 0.7374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhumade, H.; Houssein, E.H.; Rezk, H.; Moujdin, I.A.; Al-Shahrani, S. Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems. Mathematics 2023, 11, 979. https://doi.org/10.3390/math11040979
Alhumade H, Houssein EH, Rezk H, Moujdin IA, Al-Shahrani S. Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems. Mathematics. 2023; 11(4):979. https://doi.org/10.3390/math11040979
Chicago/Turabian StyleAlhumade, Hesham, Essam H. Houssein, Hegazy Rezk, Iqbal Ahmed Moujdin, and Saad Al-Shahrani. 2023. "Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems" Mathematics 11, no. 4: 979. https://doi.org/10.3390/math11040979
APA StyleAlhumade, H., Houssein, E. H., Rezk, H., Moujdin, I. A., & Al-Shahrani, S. (2023). Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems. Mathematics, 11(4), 979. https://doi.org/10.3390/math11040979