Stability Analysis of the Rational Solutions, Periodic Cross-Rational Solutions, Rational Kink Cross-Solutions, and Homoclinic Breather Solutions to the KdV Dynamical Equation with Constant Coefficients and Their Applications
Abstract
:1. Introduction
2. Rational -Shaped Solution (MSRs)
3. MSR with a One-Kink Solution
4. MSR with a Two-Kink Solution
5. Rational Kink Cross Solution (RKCs)
6. Periodic Cross-Rational Solutions (PCRs)
7. Multi-Wave Solution
8. MSR Interaction with Rogue Waves
9. Homoclinic Breather Solutions (HBs)
10. Stability Property of Solutions
11. Results and Discussion
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batool, T.; Rizvi, S.T.R.; Seadawy, A.R. Multiple breathers and rational solutions to Ito integro-differential equation arising in shallow water waves. J. Geom. Phys. 2022, 178, 104540. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Batool, T.; Ashraf, M.A. Homoclinic breaters, mulitwave, periodic cross-kink and periodic cross-rational solutions for improved perturbed nonlinear Schrödinger’s with quadratic-cubic nonlinearity. Chaos Solitons Fractals 2022, 161, 112353. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Raza, U. Detailed analysis for chirped pulses to cubic-quintic nonlinear non-paraxial pulse propagation model. J. Geom. Phys. 2022, 178, 104561. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Farrah, N.; Ahmad, S. Application of Hirota operators for controlling soliton interactions for Bose-Einstien condensate and quintic derivative nonlinear Schrödinger equation. Chaos Solitons Fractals 2022, 159, 112128. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ahmed, S.; Younis, M.; Ali, K. Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solitons Fractals 2021, 151, 111251. [Google Scholar] [CrossRef]
- Ali, K.; Seadawy, A.R.; Ahmad, S.; Rizvi, S.T.R. Discussion on rational solutions for Nematicons in liquid crystal with Kerr law. Chaos Solitons Fractals 2022, 160, 112218. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ahmad, S.; Rizvi, S.T.R.; Ali, K. Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics. J. Geom. Phys. 2022, 176, 104507. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Younis, M.; Baber, M.Z.; Iqbal, M.S.; Rizvi, S.T.R. Nonlinear acoustic wave structures to the Zabolotskaya Khokholov dynamical model. J. Geom. Phys. 2022, 175, 104474. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.R.; Mustafa, B.; Ali, K.; Althubiti, S. Chirped periodic waves for an cubic quintic nonlinear Schrödinger equation with self steepening and higher order nonlinearities. Chaos Solitons Fractals 2022, 156, 111804. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Bilal, M.; Younis, M.; Rizvi, S.T.R.; Althobaiti, S.; Makhlouf, M.M. Analytical mathematical approaches for the double chain model of DNA by a novel computational technique. Chaos Solitons Fractals 2021, 144, 110669. [Google Scholar] [CrossRef]
- Inan, I.E. Multiple Soliton Solutions of Some Nonlinear Partial Differential Equations. Univers. J. Math. Appl. 2018, 1, 273–279. [Google Scholar] [CrossRef]
- Dubard, P.; Gaillard, P.; Klein, C.; Matveev, V.B. On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 2010, 185, 247–258. [Google Scholar] [CrossRef]
- Bock, T.L.; Kruskal, M.D. A two-parameter Miura transformation of the Benjamin-Ono equation. Phys. Lett. A 1979, 74, 173–176. [Google Scholar] [CrossRef]
- Abourabia, A.M.; El Horbaty, M.M. On solitary wave solutions for the two-dimensional nonlinear modified Kortweg-de Vries-Burger equation. Chaos Solitons Fractals 2006, 29, 354–364. [Google Scholar] [CrossRef]
- Malfliet, W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 1992, 60, 650. [Google Scholar] [CrossRef]
- Taghizadeh, N.; Mirzazadeh, M.; Farahrooz, F. Exact solutions of the nonlinear Schrödinger equation by the first integral method. J. Math. Anal. Appl. 2011, 374, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Elwakil, S.A.; El-Labany, S.K.; Zahran, M.A.; Sabry, R. Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 2002, 299, 179–188. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H. New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation. Chaos Solitons Fractals 2004, 19, 71–76. [Google Scholar] [CrossRef]
- Liu, S.; Fu, Z.; Liu, S.; Zhao, Q. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 2001, 289, 69–74. [Google Scholar] [CrossRef]
- Shen, S.; Yang, Z.; Li, X.; Zhang, S. Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media. Commun. Nonlinear Sci. Numer. Simul. 2021, 103, 106005. [Google Scholar] [CrossRef]
- Shen, S.; Yang, Z.; Pang, Z.-G.; Ge, Y.-R. The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics. Appl. Math. Lett. 2022, 125, 107755. [Google Scholar] [CrossRef]
- Song, L.-M.; Yang, Z.; Li, X.-L.; Zhang, S.-M. Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons. Appl. Math. Lett. 2020, 102, 106114. [Google Scholar] [CrossRef]
- Marin, M.; Othman, M.I.A.; Seadawy, A.R.; Carstea, C. A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies. J. Taibah Univ. Sci. 2020, 14, 653–660. [Google Scholar] [CrossRef]
- Marin, M.; Seadawy, A.; Vlase, S.; Chirila, A. On mixed problem in thermoelasticity of type III for Cosserat media. J. Taibah Univ. Sci. 2022, 16, 1264–1274. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Najafi, M.; Kavitha, L.; Venkatesh, M. Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti—Leon—Manna—Pempinelli Equations. Commun. Theor. Phys. 2012, 58, 785. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Kavitha, L.; Najafi, M.; Senthil Kumar, V. Elastic collision of mobile solitons of a (3+1)-dimensional soliton equation. Nonlinear Dyn. 2016, 86, 765–778. [Google Scholar] [CrossRef]
- Huai-Tang, C.; Hong-Qing, Z. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Chaos Solitons Fractals 2004, 20, 765–769. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Lic, B. Jacobi Elliptic Function Rational Expansion Method with Symbolic Computation to Construct New Doubly-periodic Solutions of Nonlinear Evolution Equations. Z. Naturforschung A 2004, 59, 529–536. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos Solitons Fractals 2006, 29, 948–964. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, X.; Zhang, J. The -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Lu, H.; Li, X.; Niu, L. A generalized expansion method and its applications to nonlinear evolution equations. Appl. Math. Comput. 2010, 215, 3811–3816. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Dong, H.; Wei, C.; Zhang, Y.; Liu, M.; Fang, Y. The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrödinger Equation on a Time-Space Scale. Fractal Fract. 2022, 6, 12. [Google Scholar] [CrossRef]
- Ebaid, A.; Aly, E.H. Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion 2012, 49, 296–308. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y. Nonlinear Partial Differential Equations Solved by Projective Riccati Equations Ansatz. Z. Naturforschung A 2003, 58a, 511–519. [Google Scholar] [CrossRef]
- Cariello, F.; Tabor, M. Similarity reductions from extended Painleve expansions for nonintegrable evolution equations. Phys. D Nonlinear Phenom. 1991, 53, 59–70. [Google Scholar] [CrossRef]
- Wu, H.Y. On Bäcklund Transformations for Nonlinear Partial Differential Equations. J. Math. Anal. Appl. 1995, 192, 151–179. [Google Scholar] [CrossRef] [Green Version]
- He, J.-H.; Wu, X.-H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Fan, E. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 2000, 277, 212–218. [Google Scholar] [CrossRef]
- Evans, D.J.; Raslan, K.R. The tanh function method for solving some important non-linear partial differential equations. Int. J. Comput. Math. 2004, 82, 897–905. [Google Scholar] [CrossRef]
- Naher, H.; Abdullah, F. New generalized and improved (G′/G)-expansion method for nonlinear evolution equations in mathematical physics. J. Egypt. Math. Soc. 2014, 22, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.-M. Two new Painleve-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients. Nucl. Phys. B 2020, 954, 115009. [Google Scholar] [CrossRef]
- Ma, W.-X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt. Quantum Electron. 2020, 52, 511. [Google Scholar] [CrossRef]
- Ma, W.-X.; Yong, X.; Zhang, H.-Q. Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 2018, 75, 289–295. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Abdelaziz, M.A.M. The Two Variable -Expansion Method for Solving the Nonlinear KdV-mKdV Equation. Math. Probl. Eng. 2012, 2012, 725061. [Google Scholar] [CrossRef]
- Yang, J.Y.; Ma, W.X.; Qin, Z. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 2018, 8, 427–436. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ashraf, M.A.; Younis, M.; Khaliq, A.; Baleanu, D. Rogue, multi-wave, homoclinic breather, M-shaped rational and periodic-kink solutions for a nonlinear model describing vibrations. Results Phys. 2021, 29, 104654. [Google Scholar] [CrossRef]
- Ahmed, I.; Seadawy, A.R.; Lu, D. M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation. Phys. Scr. 2019, 94, 055205. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, C.; Deng, A. New periodic wave, cross-kink wave, breather, and the interaction phenomenon for the (2+1)-dimensional Sharmo-Tasso-Olver equation. Complexity 2020, 2020, 4270906. [Google Scholar] [CrossRef]
- Ahmed, I.; Seadawy, A.R.; Lu, D. Kinky breathers, W-shaped and multi-peak solitons interaction in (2+1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity. Eur. Phys. J. Plus 2019, 134, 120. [Google Scholar] [CrossRef]
- Seadawy, A.R. Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 2014, 67, 172–180. [Google Scholar] [CrossRef]
Solution | Stable | Unstable | Values of Variables |
---|---|---|---|
✓ | |||
✓ | |||
✓ | |||
✓ | Singular solution | ||
✓ | Singular solution | ||
✓ | |||
✓ | |||
✓ | Singular solution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seadawy, A.R.; Rizvi, S.T.R.; Zahed, H. Stability Analysis of the Rational Solutions, Periodic Cross-Rational Solutions, Rational Kink Cross-Solutions, and Homoclinic Breather Solutions to the KdV Dynamical Equation with Constant Coefficients and Their Applications. Mathematics 2023, 11, 1074. https://doi.org/10.3390/math11051074
Seadawy AR, Rizvi STR, Zahed H. Stability Analysis of the Rational Solutions, Periodic Cross-Rational Solutions, Rational Kink Cross-Solutions, and Homoclinic Breather Solutions to the KdV Dynamical Equation with Constant Coefficients and Their Applications. Mathematics. 2023; 11(5):1074. https://doi.org/10.3390/math11051074
Chicago/Turabian StyleSeadawy, Aly R., Syed T. R. Rizvi, and Hanadi Zahed. 2023. "Stability Analysis of the Rational Solutions, Periodic Cross-Rational Solutions, Rational Kink Cross-Solutions, and Homoclinic Breather Solutions to the KdV Dynamical Equation with Constant Coefficients and Their Applications" Mathematics 11, no. 5: 1074. https://doi.org/10.3390/math11051074
APA StyleSeadawy, A. R., Rizvi, S. T. R., & Zahed, H. (2023). Stability Analysis of the Rational Solutions, Periodic Cross-Rational Solutions, Rational Kink Cross-Solutions, and Homoclinic Breather Solutions to the KdV Dynamical Equation with Constant Coefficients and Their Applications. Mathematics, 11(5), 1074. https://doi.org/10.3390/math11051074