High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation
Abstract
:1. Introduction
2. Multi-Symplectic Discretization for the Partial Differential Equations
2.1. Spatial Discretization for the Partial Differential Equations
2.2. Second Order Energy-Preserving Scheme for Multi-Symplectic PDE
2.3. Fourth Order Energy Preserving Schemes for Multi-Symplectic PDE
3. Discrete Schemes of Multi-Symplectic Sine-Gordon Equation
3.1. Second Order AVF Scheme for Sine-Gordon Equation
3.2. Fourth Order Composition AVF Scheme for Sine-Gordon Equation
4. Numerical Experiments
4.1. Numerical Experiments for Single Solitary Wave
4.2. Numerical Experiments for Kink and Anti-Kink Solitary Waves
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Blanes, S.; Casas, F.; Ros, J. Symplectic intergrators with processing: A general study. SIAM J. Sci. Comput. 1999, 21, 711–727. [Google Scholar] [CrossRef]
- Calvo, M.P.; Sanz-Serna, J.M. The development of variable-step symplectic integrators, with applications to the two-body problem. SIAM J. Sci. Comput. 1993, 14, 936–952. [Google Scholar] [CrossRef]
- Candy, J.; Rozmus, W. A symplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys. 1991, 92, 230–256. [Google Scholar] [CrossRef]
- Feng, K.; Wu, H.M.; Qin, M.Z.; Wang, D.L. Construction of canonical difference schemes for Hamiltonian formalism via generating functions. J. Comput. Math. 1989, 7, 71–96. [Google Scholar]
- Sun, J.Q.; Gu, X.Y.; Ma, Z.Q. Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Phys. D Nonlinear Phenom. 2004, 196, 311–328. [Google Scholar] [CrossRef]
- Van de Vyver, H. A fourth order symplectic exponentially fitted integrator. Comput. Phys. Commun. 2006, 174, 255–262. [Google Scholar] [CrossRef]
- Bridges, T.J. Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 1997, 121, 147–190. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.E.; Shkoller, S. Multi-symplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Camb. Philos. Soc. 1999, 125, 553–575. [Google Scholar] [CrossRef] [Green Version]
- Reich, S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian Wave Equation. J. Comput. Phys. 2000, 157, 473–499. [Google Scholar] [CrossRef] [Green Version]
- Ascher, U.M.; McLachlan, R.I. Multi-symplectic box schemes and the KortewegCde Vries equation. Appl. Numer. Math. 2004, 48, 255C–269C. [Google Scholar] [CrossRef] [Green Version]
- Bridges, T.J.; Reich, S. Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 2001, 284, 184–193. [Google Scholar] [CrossRef]
- Chen, J.B. A multisymplectic integrator for the periodic nonlinear Schrödinger equation. Appl. Math. Comput. 2005, 170, 1394–1417. [Google Scholar] [CrossRef]
- Hong, J.L.; Kong, L.H. Novel multi-symplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term. Commun. Comput. Phys. 2010, 7, 613–630. [Google Scholar]
- Celledoni, E.; Grimm, V.; Mclachlan, R.I.; O’Neale, D.; Owren, B.; Quispel, G.R.W. Preserving energy resp. dissipation in numerical PDEs using the Average Vector Field method. Comput. Phys. 2012, 231, 6770–6789. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, R.I.; Quispel, G.R.W.; Robidoux, N. Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 1999, 357, 1021–1046. [Google Scholar] [CrossRef]
- Quispel, G.R.W.; Mclaren, D.I. A new class of energy-preserving numerical integration methods. Phys. A Math. Theor. 2008, 41, 045206. [Google Scholar] [CrossRef]
- Gong, Y.Z.; Cai, J.X.; Wang, Y.S. Some new structure-preserving algorithms for general multi-symplectic formulations of Hamitonian PDEs. Comput. Phys. 2014, 279, 80–102. [Google Scholar] [CrossRef]
- Ruth, R.D. A canonical integration technique. IEEE Trans. Nucl. Sci. 1983, 30, 26–69. [Google Scholar] [CrossRef]
- Yoshida, H. Construction of higher order symplectic intergrators. Phys. Lett. A 1990, 150, 262–268. [Google Scholar] [CrossRef]
- Qin, M.Z.; Zhu, W.J. Construction of higher order symplectic schemes by composition. Computing 1992, 47, 309–321. [Google Scholar]
- Wrubel, O. Qin-Kompositionen mit Lie-Reihen; Diplomarbeit Uni Karlsruhe (TH): Karlsruhe, Germany, 1996. [Google Scholar]
- Chen, J.B.; Qin, M.Z. Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electr. Trans. Numer. Anal. 2001, 12, 193–204. [Google Scholar]
- Wang, M.Y. Discussion on diagonalization of real antisymmetric matrices. J. Hexi Univ. 2008, 24, 34–37. [Google Scholar]
- Josephson, J.D. Supercurrents through barries. Adv. Phys. 1965, 14, 419–451. [Google Scholar] [CrossRef]
- Liu, A.R.; Gao, W.; Li, H. A fourth-order compact finite volume scheme for 1D sine-Gordon equations. Adv. Appl. Math. 2015, 4, 262–270. [Google Scholar] [CrossRef]
- Guo, B.Y.; Pascual, P.J.; Rodriguez, M.J.; Vázquez, L. Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 1986, 18, 1–14. [Google Scholar]
- Li, S.; Vu-Quoc, L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM. J. Numer. Analys. 1995, 32, 1839–1875. [Google Scholar] [CrossRef]
- Vu-Quoc, L.; Li, S.F. Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation. Compt. Methods Appl. Mech. Eng. 1993, 107, 341–391. [Google Scholar] [CrossRef]
- Mclachlan, R.I. Symplectic integration of Hamiltonian wave equations. Numer. Math. 1993, 66, 465–492. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Iavernaro, F.; Pace, B. S-Stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type. AIP Conf. Proc. 2007, 936, 603–606. [Google Scholar]
- Dehghan, M.; Mirzaei, D. The Boundary Integral Equation Approach for Numerical Solution of the One Dimensional Sine-Gordon Equation; Wiley InterScience: Hoboken, NJ, USA, 2008. [Google Scholar]
- Jiang, C.L.; Sun, J.Q.; Li, H.C.; Wang, Y. A fourth-order AVF method for the numerical integration of sine-Gordon equation. Appl. Math. Comput. 2017, 313, 144–158. [Google Scholar]
Scheme 1 | Order | Scheme 2 | Order | Scheme 3 | Order | |
---|---|---|---|---|---|---|
3.5408 × 10 | – | 3.3818 × 10 | – | 2.2893 × 10 | – | |
8.8508 × 10 | 2.0003 | 8.4576 × 10 | 1.9995 | 1.4431 × 10 | 3.9876 | |
2.2126 × 10 | 2.0002 | 2.1146 × 10 | 1.9999 | 9.0375 × 10 | 3.9971 | |
5.5315 × 10 | 2.0001 | 5.2866 × 10 | 2.0000 | 5.6367 × 10 | 4.0030 |
Scheme 1 | Order | Scheme 2 | Order | Scheme 3 | Order | |
---|---|---|---|---|---|---|
1.5178 × 10 | – | 1.0912 × 10 | – | 7.4527 × 10 | – | |
2.8834 × 10 | 1.9981 | 2.7312 × 10 | 1.9983 | 4.7887 × 10 | 3.9601 | |
7.2113 × 10 | 1.9994 | 6.8304 × 10 | 1.9995 | 3.5881 × 10 | 3.7383 | |
1.8034 × 10 | 1.9995 | 1.7082 × 10 | 1.9995 | 2.7656 × 10 | 3.6987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zhang, J.; Kong, J. High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation. Mathematics 2023, 11, 1105. https://doi.org/10.3390/math11051105
Sun J, Zhang J, Kong J. High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation. Mathematics. 2023; 11(5):1105. https://doi.org/10.3390/math11051105
Chicago/Turabian StyleSun, Jianqiang, Jingxian Zhang, and Jiameng Kong. 2023. "High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation" Mathematics 11, no. 5: 1105. https://doi.org/10.3390/math11051105
APA StyleSun, J., Zhang, J., & Kong, J. (2023). High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation. Mathematics, 11(5), 1105. https://doi.org/10.3390/math11051105