Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System
Abstract
:1. Introduction
2. Approximate Closed-Form Solutions to the Chen’s System
- (a)
- If and the system (1) has the Hamilton–Poisson realization. The functional is the Hamiltonian and the is functionally independent Casimir. Thus, the exact solution is written as an intersection between the surfaces and .
- (b)
- For , the Hamiltonian function is , but finding the Casimir functions remains an open problem. Therefore, it is impossible to write the exact solution as an intersection between the surfaces and .
- (c)
- Otherwise, the Chen’s system is chaotic.
3. Application to the Nonlinear Anharmonic Oscillator
3.1. The Zeroth-Order Deformation Problem
3.2. The First-Order Deformation Problem
3.3. The First-Order Analytical Approximate Solution
4. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Popov, D.; Dong, S.; Pop, N.; Sajfert, V.; Simon, S. Construction of the Barut–Girardello quasi coherent states for the Morse potential. Ann. Phys. 2013, 339, 122–134. [Google Scholar]
- Gupta, V.P. Principles and Applications of Quantum Chemistry; Academic Press: Cambridge, MA, USA, 2016; pp. 1–46. [Google Scholar]
- He, J.; Jiao, M.; Gepreel, K.A.; Khan, Y. Homotopy perturbation method for strongly nonlinear oscillators. Math. Comput. Simul. 2023, 204, 243–258. [Google Scholar]
- Bel, G.; Alexandrov, B.S.; Bishop, A.R.; Rasmussen, K. Patterns and stability of coupled multi-stable nonlinear oscillators. Chaos Solitons Fractals Interdiscip. 2023, 166, 112999. [Google Scholar]
- Vieira, R.; Martins, W.S.; Barreiro, S.; de Oliveira, R.A.; Chevrollier, M.; Oria, M. Synchronization of a nonlinear oscillator with a sum signal from equivalent oscillators. Chaos Solitons Fractals 2021, 153, 111581. [Google Scholar]
- Mariano, P.M.; Spadini, M. Periodic solutions to perturbed nonlinear oscillators with memory. Physica D 2023, 445, 133635. [Google Scholar]
- Liu, Q.X.; Liu, J.K.; Chen, Y.M. An analytical criterion for alternate stability switches in nonlinear oscillators with varying time delay. Int. J.-Non-Linear Mech. 2020, 126, 103563. [Google Scholar]
- Bibikov, Y.N.; Savel’eva, A.G. Periodic Perturbations of a Nonlinear Oscillator. Differ. Equ. 2016, 52, 405–412. [Google Scholar]
- Kaparulin, D.S.; Lyakhovich, S.L. On the stability of a nonlinear oscillator with higher derivatives. Russ. Phys. J. 2015, 57, 1561–1565. [Google Scholar]
- Pei, Q.-Y.; Li, L. Chaotic behavior of a nonlinear oscillator. Appl. Math. Mech. 1993, 14, 395–405. [Google Scholar] [CrossRef]
- Ginoux, J.M.; Rossetto, B. Differential geometry and mechanics: Applications to chaotic dynamical systems. Int. J. Bifurcat. Chaos 2006, 16, 887. [Google Scholar]
- Hernández-Bermejo, B.; Fairen, V. Simple evaluation of Casimirs invariants in finite dimensional Poisson systems. Phys. Lett. A 1998, 241, 148–154. [Google Scholar]
- Kahan, W. Unconventional numerical methods for trajectory calculation. Unpubl. Lect. Notes 1993, 1, 13. [Google Scholar]
- Pop, C.; Petrisor, C.; Bala, D. Hamilton-Poisson Realizations for the Lü System. Math. Probl. Eng. 2011, 2011, 842325. [Google Scholar] [CrossRef] [Green Version]
- Ariesanu, C.P. Numerical integration and Stability Problems in the Study of Lorenz System. Acta Tech. Napoc. 2011, 54, 333–339. [Google Scholar]
- Puta, M. Hamiltonian Systems and Geometric Quantization. Mathematics and Its Applications; Springer: Berlin/Heidelberg, Germany, 1993; Volume 260. [Google Scholar]
- Tudoran, R.M.; Aron, A.; Nicoara, S. On a Hamiltonian Version of the Rikitake System. SIAM J. Appl. Dyn. Syst. 2010, 8, 454–479. [Google Scholar]
- Anakira, N.R.; Alomari, A.K.; Jameel, A.; Hashim, I. Multistage optimal homotopy asymptotic method for solving initial-value problems. J. Nonlinear Sci. App. 2016, 9, 1826–1843. [Google Scholar]
- Khatibzadeh, H. Asymptotic Behavior of a Discrete Nonlinear Oscillator with Damping Dynamical System. Adv. Differ. Equ. 2011, 2011, 867136. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurcat. Chaos 1999, 9, 1465–1466. [Google Scholar]
- Daminou, P.A. Multiple Hamiltonian structures for Toda systems of type A-B-C. Regul. Chaotic Dyn. 2000, 5, 17–32. [Google Scholar]
- Aron, A.; Puta, M. Stability, periodic solutions and numerical integration in the Kowalevski top dynamics. Int. J. Geom. Methods M 2006, 3, 1323–1330. [Google Scholar]
- Pop, C.; Aron, A.; Galea, C.; Ciobanu, M.; Ivan, M. Some geometric aspects in the theory of Lotka-Volterra system. In Proceedings of the 11th WSEAS International Conference on Sustenability in Science Engineering, Timisoara, Romania, 27–29 May 2009; pp. 91–97. [Google Scholar]
- Aron, A.; Girban, G.; Kilyeni, S. A Geometric Approach of a Battery Mathematical Model for On-Line Energy Monitoring. In Proceedings of the 2011 IEEE EUROCON-International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011. [Google Scholar]
- Puta, M.; Pop, C.; Danaiasa, C.; Hedrea, C. Some geometric aspects in the theory of Lagrange system. Tensor 2008, 69, 83–87. [Google Scholar]
- Gumral, H.; Nutku, Y. Poisson structure of dynamical systems with three degrees of freedom. AIP J. Math. Phys. 1993, 34, 5691–5721. [Google Scholar]
- Gonzalez, G.A.; Nielsen, C.; Bortoff, Z. Attractivity of Unstable Equilibria for a Controlled Chen System via Small Output Feedback. Chaos Solitons Fractals 2022, 164, 112642. [Google Scholar]
- Ren, H.-P.; Tian, K.; Grebogi, C. Topological horseshoe in a single-scroll Chen system with time delay. Chaos Solitons Fractals 2020, 132, 109593. [Google Scholar]
- Qin, W.-X.; Chen, G. On the boundedness of solutions of the Chen system. J. Math. Anal. Appl. 2007, 329, 445–451. [Google Scholar]
- Alvarez-Ramirez, J.; Cevantes, I.; Femat, R. An equilibrium point stabilization strategy for the Chen system. Phys. Lett. A 2004, 326, 234–242. [Google Scholar]
- Hu, H.; Liu, L.; Ding, N. Pseudorandom sequence generator based on the Chen chaotic system. Comput. Physics Commun. 2013, 184, 765–768. [Google Scholar]
- Cheng, Z. Anti–control of Hopf bifurcation for Chen’s system through washout filters. Neurocomputing 2010, 73, 3139–3146. [Google Scholar]
- Chowdhury, M.S.H.; Hashim, I. Application of multistage homotopy–perturbation method for the solutions of the Chen system. Nonlinear Anal. Real World Appl. 2009, 10, 381–391. [Google Scholar]
- Alomari, A.K.; Noorani, M.S.M.; Nazar, R. Adaptation of homotopy analysis method for the numeric–analytic solution of Chen system. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14, 2336–2346. [Google Scholar]
- Liu, Y.; Zhu, J.; Ding, D. Adaptive synchronization of Chen chaotic system with uncertain parameters. J. China Univ. Posts Telecommun. 2007, 14, 103–105. [Google Scholar]
- Al-sawalha, M.M.; Noorani, M.S.M. A numeric–analytic method for approximating the chaotic Chen system. Chaos Solitons Fractals 2009, 42, 1784–1791. [Google Scholar]
- Noorani, M.S.M.; Hashim, I.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M. Comparing numerical methods for the solutions of the Chen system. Chaos Solitons Fractals 2007, 32, 1296–1304. [Google Scholar]
- Park, J.H.; Lee, S.M.; Kwon, O.M. Dynamic controller design for exponential synchronization of Chen chaotic system. Phys. Lett. A 2007, 367, 271–275. [Google Scholar]
- Wang, Y.; Guan, Z.; Wang, H.O. Feedback and adaptive control for the synchronization of Chen system via a single variable. Phys. Lett. A 2003, 312, 34–40. [Google Scholar]
- Marinca, V.; Herisanu, N.; Bota, C.; Marinca, B. An optimal homotopy asymptotic method applied to the steady flow of a fourth grade fluid past a porous plate. Appl. Math. Lett. 2009, 22, 245–251. [Google Scholar]
- Marinca, V.; Herisanu, N. Nonlinear Dynamical Systems in Engineering; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Marinca, V.; Herisanu, N. The Optimal Homotopy Asymptotic Method: Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Liang, X.; Qi, G. Mechanical analysis of Chen chaotic system. Chaos Solitons Fractals 2017, 98, 173–177. [Google Scholar]
- Ariesanu, C.P.; Petrisor, C. A geometric approach of the Chen’s system. IFAC Proc. Vol. 2012, 45, 288–292. [Google Scholar]
- Zhou, T.; Tang, Y.; Chen, G. Chen’s attractor exists. Int. J. Bifurcat. Chaos 2004, 14, 3167–3177. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar]
t | ||||
---|---|---|---|---|
0 | 0.35078105 | |||
1.7 | −0.40330489 | |||
3.4 | −0.63904518 | |||
5.1 | −0.29126219 | |||
6.8 | 0.12552955 | |||
8.5 | 0.29643558 | |||
10.2 | 0.16028326 | |||
11.9 | −0.05820289 | |||
13.6 | −0.15188552 | |||
15.3 | −0.08407041 | |||
17 | 0.03107464 | |||
obtained from Equation (22) and | ||||
Equation (A1) | Equation (A2) | Equation (A3) | Equation (A4) | |
0 | 0.35078105 | 0.35078105 | 0.35078105 | 0.35078105 |
1.7 | −0.40841782 | −0.40330994 | −0.40330493 | −0.40330493 |
3.4 | −0.64462314 | −0.63904979 | −0.63904521 | −0.63904521 |
5.1 | −0.29646094 | −0.29126751 | −0.29126222 | −0.29126223 |
6.8 | 0.12060783 | 0.12552535 | 0.12552950 | 0.12552951 |
8.5 | 0.28751514 | 0.29643084 | 0.29643554 | 0.29643554 |
10.2 | 0.14938850 | 0.16027866 | 0.16028322 | 0.16028322 |
11.9 | −0.06828322 | −0.05819707 | −0.05820297 | −0.05820293 |
13.6 | −0.16709523 | −0.15188883 | −0.15188558 | −0.15188556 |
15.3 | −0.09821857 | −0.08408416 | −0.08407045 | −0.08407044 |
17 | 0.01573297 | 0.03106425 | 0.03107455 | 0.03107461 |
Relative errors | ||||
0 | 5.689 × | 5.551 × | 5.689 × | 2.841 × |
1.7 | 0.00511292 | 5.049 × | 3.829 × | 3.423 × |
3.4 | 0.00557796 | 4.616 × | 3.491 × | 3.438 × |
5.1 | 0.00519875 | 5.321 × | 3.786 × | 4.167 × |
6.8 | 0.00492171 | 4.197 × | 4.579 × | 4.043 × |
8.5 | 0.00892043 | 4.732 × | 3.524 × | 3.975 × |
10.2 | 0.01089475 | 4.599 × | 3.694 × | 4.065 × |
11.9 | 0.01008032 | 5.821 × | 7.353 × | 3.995 × |
13.6 | 0.01520970 | 3.307 × | 5.836 × | 3.493 × |
15.3 | 0.01414815 | 1.374 × | 3.568 × | 2.826 × |
17 | 0.01534166 | 1.039 × | 8.433 × | 3.114 × |
t | Relative Errors | ||
---|---|---|---|
0 | 1 | 0.99999998 | 1.781 × |
1.7 | 0.57062883 | 0.57062880 | 3.337 × |
3.4 | −0.10808510 | −0.1080850 | 4.599 × |
5.1 | −0.49392956 | −0.4939297 | 1.456 × |
6.8 | −0.38333158 | −0.3833315 | 8.265 × |
8.5 | 0.00446477 | 0.0044648 | 3.685 × |
10.2 | 0.25485018 | 0.2548503 | 1.881 × |
11.9 | 0.20964292 | 0.2096428 | 2.959 × |
13.6 | 0.00265313 | 0.0026531 | 2.432 × |
15.3 | −0.13494391 | −0.1349440 | 9.170 × |
17 | −0.11083968 | −0.1108396 | 2.099 × |
t | Relative Errors | ||
---|---|---|---|
0 | 1 | 1.0000000000006326 | 6.326 × |
1.7 | −1.11056659 | −1.11056670 | 1.180 × |
3.4 | −1.45269382 | −1.45269367 | 1.479 × |
5.1 | −0.85957282 | −0.85957335 | 5.275 × |
6.8 | 0.39565568 | 0.39565592 | 2.411 × |
8.5 | 0.87239595 | 0.87239585 | 9.511 × |
10.2 | 0.50030350 | 0.50030353 | 3.028 × |
11.9 | −0.18571072 | −0.18571121 | 4.917 × |
13.6 | −0.47530599 | −0.47530611 | 1.210 × |
15.3 | −0.26726775 | −0.26726775 | 8.200 × |
17 | 0.09939116 | 0.09939132 | 1.591 × |
t | Relative Errors | ||
---|---|---|---|
0 | 1 | 0.999999999999494 | 5.060 × |
1.7 | 0.90288415 | 0.90288402 | 1.293 × |
3.4 | 0.42244420 | 0.42244411 | 8.863 × |
5.1 | 1.10041934 | 1.10041980 | 4.580 × |
6.8 | 1.30111457 | 1.30111456 | 1.648 × |
8.5 | 1.09217208 | 1.09217192 | 1.641 × |
10.2 | 1.27059023 | 1.27059079 | 5.585 × |
11.9 | 1.33997205 | 1.33997212 | 6.118 × |
13.6 | 1.27858895 | 1.27858892 | 3.430 × |
15.3 | 1.32831159 | 1.32831174 | 1.498 × |
17 | 1.34769247 | 1.34769251 | 3.643 × |
t | |||
---|---|---|---|
0 | 1 | 0.99999998 | 1 |
1/2 | 0.95863428 | 0.95863428 | 0.95863421 |
1 | 0.83589390 | 0.83589396 | 0.83587428 |
3/2 | 0.65318706 | 0.65318710 | 0.65280614 |
2 | 0.44281996 | 0.44281983 | 0.44040998 |
5/2 | 0.23134451 | 0.23134437 | 0.22345920 |
3 | 0.03418218 | 0.03418216 | 0.01748463 |
7/2 | −0.14118335 | −0.14118327 | −0.16734859 |
4 | −0.28999110 | −0.28999104 | −0.32509324 |
9/2 | −0.40661666 | −0.40661673 | −0.48802039 |
5 | −0.48384683 | −0.48384691 | 0.22295502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, R.-D.; Pop, N. Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System. Mathematics 2023, 11, 1124. https://doi.org/10.3390/math11051124
Ene R-D, Pop N. Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System. Mathematics. 2023; 11(5):1124. https://doi.org/10.3390/math11051124
Chicago/Turabian StyleEne, Remus-Daniel, and Nicolina Pop. 2023. "Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System" Mathematics 11, no. 5: 1124. https://doi.org/10.3390/math11051124
APA StyleEne, R. -D., & Pop, N. (2023). Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System. Mathematics, 11(5), 1124. https://doi.org/10.3390/math11051124