Next Article in Journal
Uniform Asymptotic Estimate for the Ruin Probability in a Renewal Risk Model with Cox–Ingersoll–Ross Returns
Previous Article in Journal
Probabilistic Classification Method of Spiking Neural Network Based on Multi-Labeling of Neurons
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Fourth-Linear aff(1)-Invariant Differential Operators and the First Cohomology of the Lie Algebra of Vector Fields on RP1

by
Areej A. Almoneef
1,*,
Meher Abdaoui
2 and
Abderraouf Ghallabi
3
1
Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2
Department of Mathematics, College of Sciences and Humanities-Kowaiyia, Shaqra University, Shaqra 15526, Saudi Arabia
3
Department of Mathematics, Faculty of Sciences of Sfax, BP 802, Sfax 3038, Tunisia
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(5), 1226; https://doi.org/10.3390/math11051226
Submission received: 28 January 2023 / Revised: 26 February 2023 / Accepted: 1 March 2023 / Published: 2 March 2023

Abstract

:
In this paper, we denote the Lie algebra of smooth vector fields on RP 1 by V ( RP 1 ) . This paper focuses on two parts. In the beginning, we determine the cohomology space of aff ( 1 ) with coefficients in D τ , λ , μ ; ν . Afterward, we classify aff ( 1 ) -invariant fourth-linear differential operators from V ( RP 1 ) to D τ , λ , μ ; ν vanishing on aff ( 1 ) . This result enables us to compute the aff ( 1 ) -relative cohomology of V ( RP 1 ) with coefficients in D τ , λ , μ ; ν .
MSC:
53D55; 14F10; 17B10; 17B68

1. Introduction

Throughout this paper, we denote by N the sets of positive integers. All vector spaces and algebras in this paper are over R . Let C be the Lie algebra, I be the C -modules, and h be the subalgebra of C . We denote by LA , DO , H 1 ( C ; I ) and H 1 ( C , h ; I ) the Lie algebra, differential operators, first cohomology space of the Lie algebra C with coefficients in I and first h -relative cohomology of C with coefficients in I , respectively. Additionally, we denote by Hom h the h -invariant differential operators.
Let I and J be two C -modules. The nontrivial extensions of C -modules
0 I . J 0
are classified by H 1 ( C ; Hom ( I , J ) ) (see [1]). Every 1-cocycle L generates a new action on I J as follows: for all c C and for all ( , k ) I J , we define c * ( , k ) : = ( c * + C s t L ( k ) , c * k ) . For the space of tensor densities of weight α R in F α , viewed as a module over the LA of smooth vector fields V ( RP 1 ) , the classification of nontrivial extensions
0 F μ . F λ 0 ,
leads, according to Feigin and Fuks in [2], to compute the first H 1 ( V ( RP 1 ) ; Hom ( F λ , F μ ) ) . Later, Ovsienko and Bouarroudj in [3] calculated
H 1 ( V ( RP 1 , sl ( 2 , R ) ; Hom ( F λ , F μ ) ) .
The research into the equivariant quantization method described in [4,5] led to the study of H 1 ( V ( RP 1 , sl ( 2 , R ) ; Hom ( F λ , F μ ) ) . It was proved that from the space of symbols and to the space of DO , there exists an sl ( 2 , R ) -equivariant quantization map, but this map is not V ( RP 1 ) -equivariant. The impediment here is given by the 1-cocycles that span H 1 ( V ( RP 1 , sl ( 2 , R ) ; Hom ( F λ , F μ ) ) (see [3,6]). The calculation is based on an old result of Gordan [7] on the classification of the bilinear Hom sl ( 2 , R ) that acts on tensor densities. Moreover, the cases of a higher-dimensional manifold and a Riemann surface have been studied in [8,9,10], respectively.
In this paper, we determine the first H 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) , where D τ , λ , μ ; ν is the space of trilinear DO acting on weighted densities. We show that H 1 ( aff ( 1 ) ; Hom ( F τ F λ F μ , F ν ) ) is 1 2 ( k + 1 ) ( k + 2 ) -dimensional if k = ν τ λ μ N and zero-dimensional otherwise. Secondly, we classify fourth-linear Hom aff ( 1 ) from V ( RP 1 ) to D τ , λ , μ ; ν vanishing on aff ( 1 ) . We prove that dim Hom aff ( 1 ) = 1 6 k ( k 1 ) ( k + 1 ) , where k = ν τ λ μ + 1 . We use the result to compute H diff 1 V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν . We show that nonzero H diff 1 V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν only appear for resonant values of weights that satisfy ν τ λ μ < 8 .
These spaces appear naturally in the problem of describing the deformations of the modules D τ , λ , μ ; ν . Precisely, H 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) classifies the infinitesimal deformations of a aff ( 1 ) -module D τ , λ , μ ; ν . Likewise, H 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) measures the infinitesimal deformations of a V ( RP 1 ) -module D τ , λ , μ ; ν that become trivial once the action is restricted to aff ( 1 ) ( aff ( 1 ) -trivial deformations).
Our paper is structured as follows. In Section 2, we recall some necessary definitions and preliminary results related to the cohomology space and to the space of multilinear DO . In Section 3, we determine H 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) . In Section 4, we classify the fourth-linear Hom aff ( 1 ) from V ( RP 1 ) to D τ , λ , μ ; ν vanishing on aff ( 1 ) . In Section 5, we determine H diff 1 V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν . Finally, in Section 6, we offer our conclusions and describe future research.

2. Preliminaries

In this Section, we recall some necessary definitions and preliminary results related to the cohomology space and to the space of multilinear DO .
Definition 1.
The LA , denoted by aff ( 1 ) , is realized as a subalgebra of V ( RP 1 ) ,
aff ( 1 ) = s p a n X 1 = d d x , X x = x d d x .
The commutation relations are given by
X x , X 1 = X 1 and X 1 , X 1 = X x , X x = 0 ,
where a , b = a b b a .
Definition 2.
The space of sections of the line bundle ( T * RP 1 ) m , denoted by F m , is the space of tensor densities of weight m on RP 1 . F 0 coincides with the space of functions and F 1 coincides with the space of differential forms. By the Lie derivative, the LA V ( RP 1 ) acts on F m . For all f F m and for all Y V ( RP 1 ) ,
L Y m ( f ) = Y f + m f Y ,
where the superscript stands for d d x .

2.1. The Space of Trilinear DO as a V ( RP 1 ) -Module

We consider the trilinear DO that acts on tensor densities (see [11]):
Ψ : F m F n F p F q .
The LA V ( RP 1 ) acts on the space of trilinear DO as follows. For all f F m , for all g F n and for all h F p ,
L Y m , n , p ; q ( Ψ ) ( f , g , h ) = L Y q Ψ ( f , g , h ) Ψ ( L Y m f , g , h ) Ψ ( f , L Y n g , h ) Ψ ( f , g , L Y p h ) .
Thus, the space of trilinear DO is a V ( RP 1 ) -module.

2.2. Cohomology of Lie Algebra

Let C n ( C , h ; I ) : = Hom h ( Λ n ( C / h ) ; I ) be the space of h -relative n-cochains of C with values in I (see [1]). We denote by n the coboundary DO of C n ( C , h ; I ) with value in C n + 1 ( C , h ; I ) that it satisfies n n 1 = 0 .
By definition, H n ( C , h ; I ) is the quotient space
H n ( C , h ; I ) = Z n ( C , h ; I ) / B n ( C , h ; I ) ,
where Z n ( C , h ; I ) is the kernel of n that is called the space of h -relative n-cocycles, and B n ( C , h ; I ) is the elements in the range of n 1 that is called the space of h -relative n-coboundaries. For n = 1 and for all φ C 1 ( C , h ; I ) ,
( φ ) ( g , h ) : = g · φ ( h ) h · φ ( g ) φ ( [ g , h ] ) , for any g , h C .

3. H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν )

In this section, we will determine H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) . In [1,8,10,12,13,14,15], the cohomology computation steps listed below were heavily utilized.
Let ( ν , τ , λ , μ ) R 4 and β = ( β 1 , β 2 , β 3 ) N 3 , we consider δ = ν τ λ μ and | β | = β i . For F = f d x τ g d x λ φ d x μ F τ F λ F μ , we denote
F ( β ) : = f ( β 1 ) g ( β 2 ) φ ( β 3 ) d x ν .
Recall that the space F τ F λ F μ is a V ( RP 1 ) -module:
X h · F : = L X h τ , λ , μ ( F ) = L X h τ ( f ) d x τ g d x λ φ d x μ + f d x τ L X h λ ( g ) d x λ φ d x μ + f d x τ g d x λ L X h μ ( φ ) d x μ .
The following theorem is the main result in this section:
Theorem 1.
(1) 
If δ N then H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) = 0 .
(2) 
If δ = k N then
dim H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) = ( k + 1 ) ( k + 2 ) 2 .
Moreover, H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) is spanned by the following 1-cocycles:
ω j ( X h , G ) = h G ( j ) , | j | = k .
To prove this theorem, we need the following lemma.
Lemma 1.
H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) = H diff 1 ( aff ( 1 ) , X 1 ; D τ , λ , μ ; ν ) .
That is, up to a coboundary, any 1-cocycle is Hom X 1 .
Proof. 
Any 1-cocycle on aff ( 1 ) should retain the following general form:
ω ( X h , G ) = j N j h G ( j ) + j M j h G ( j ) ,
where N j and M j are, a priori, functions. First, we prove that the terms in h can be annihilated by adding a coboundary. Let c : F τ F λ F μ F ν be a 3-ary DO defined by
c ( G ) = i E i G ( i ) ,
We have
c ( X h , G ) = h ( c ( G ) ) + ν h c ( G ) c ( X h · G ) = j E j h G ( j ) + j ( δ | j | ) E j h G ( j )
Thus, if E j = N j then ω c does not contain terms in h. So, we can replace ω by ω c . That is, on aff ( 1 ) , any 1-cocycle can be expressed up to a coboundary as follows:
ω ( X h , G ) = j B j h G ( j ) .
Now, this ω is vanishing on X 1 , and thus, it is X 1 -invariant. Hence, B j = 0 for all j. □
Before proving Theorem 1, we need this proposition.
Proposition 1.
If δ N then, any 1-cocycle ω Z diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) can be expressed up to a coboundary, as follows. For all X h aff ( 1 ) and for all G = f 1 d x τ g d x λ φ d x μ F τ F λ F μ :
ω ( X h , G ) = | j | = δ B j h G ( j ) ,
where the B j are constants.
Proof. 
Consider the 1-cocycle ω defined by (6) and consider the operator c where
c ( F ) = | j | δ B j δ | j | F ( j ) .
We can easily prove that
( ω c ) ( X h , G ) = | j | = δ B j h G ( j ) .
We are now able to prove Theorem 1.
Proof of Theorem 1.
(1) Using Lemma 1, we can easily verify that the 1-cocycle ω defined by (6) is nothing but the operator c where
c ( G ) = j B j δ | j | G ( j ) ,
(2) By Formula (5), c ( X h , G ) does not contain any terms in h G ( j ) for | j | = δ ; therefore, for | j | = δ , the 1-cocycles ω j are nontrivial. Thus, according to the Proposition 1, the classes of 1-cocycles ω j defined by ω j ( X h , G ) = h G ( j ) , where | j | = k provides a basis of H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) . Therefore, dim H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) is the cardinal Γ 3 k of the set j N 3 , | j | = k . Using induction, we prove Γ 3 k = 3 + k 1 k = ( k + 1 ) ( k + 2 ) 2 . □

4. Fourth-Linear Hom aff ( 1 )

The following computation steps for the relative cohomology have intensively been used in [3,8,10,16,17,18]. First, we classify the fourth-linear Hom aff ( 1 ) , then we isolate among them those that are 1-cocycles. To do that, we need the following lemma.
Lemma 2.
Any 1 cocycle vanishing on the subalgebra aff ( 1 ) of V ( RP 1 ) is Hom aff ( 1 ) .
Proof. 
The 1-cocycle condition of Λ reads as follows:
X · Λ ( Y ) Y · Λ ( X ) Λ ( [ X , Y ] ) = 0 ,
where X , Y V ( RP 1 ) . Thus, if Λ ( X ) = 0 for all X aff ( 1 ) , Equation (8) becomes
Λ ( [ X , Y ] ) = X · Λ ( Y )
expressing the aff ( 1 ) -invariance property of Λ . □
As our 1-cocycles vanish on aff ( 1 ) , we will investigate the linear Hom aff ( 1 ) that vanishes on aff ( 1 ) .
Proposition 2.
There exist fourth-linear Hom aff ( 1 )   Υ k ξ , τ , λ , μ : F ξ F τ F λ F μ F ξ + τ + λ + μ + k , given by
Υ k ξ , τ , λ , μ ( f , φ , ϕ , ψ ) = i + j + + m = k ε i , j , , m f ( i ) φ ( j ) ϕ ( ) ψ ( m ) ,
where i + j + + m = k and the coefficients ε i , j , , m are constants.
If ξ, τ, λ and μ are generic, then the space of solutions is 1 6 ( k + 1 ) ( k + 2 ) ( k + 3 ) -dimensional.
Proof. 
Any differential operator Υ k ξ , τ , λ , μ : F ξ F τ F λ F μ F ξ + τ + λ + μ + k is of the form
Υ k ξ , τ , λ , μ ( f , φ , ϕ , ψ ) = i + j + + m = k ε i , j , , m f ( i ) φ ( j ) ϕ ( ) ψ ( m ) ,
where ε i , j , l , m are functions. The aff ( 1 ) -invariant property of the operators Υ k ξ , τ , λ , μ reads as follows:
L X ν Υ k ξ , τ , λ , μ ( f , φ , ϕ , ψ ) = Υ k ξ , τ , λ , μ ( L X ξ f , φ , ϕ , ψ ) + Υ k ξ , τ , λ , μ ( f , L X τ φ , ϕ , ψ ) + Υ k ξ , τ , λ , μ ( f , φ , L X λ ϕ , ψ ) + Υ k ξ , τ , λ , μ ( f , φ , ϕ , L X μ ψ ) .
The invariant property with respect to X = d d x (respectively X = x d d x ) implies that ε i , j , = 0 (respectively ν = ξ + τ + λ + μ + k ). Then the space of solutions is 1 6 ( k + 1 ) ( k + 2 ) ( k + 3 ) -dimensional for ξ , τ , λ and μ are generic, spanned by
ε r , s , t , v , w h e r e r + s + t + v = k , 0 r , s , t , v k .
Proposition 3.
There exist fourth-linear Hom aff ( 1 )   Υ k τ , λ , μ : V ( RP 1 ) F τ F λ F μ F τ + λ + μ + k 1 that vanish on aff ( 1 ) given by
Υ k τ , λ , μ ( X , φ , ϕ , ψ ) = i + j + + m = k ε i , j , , m X ( i ) φ ( j ) ϕ ( ) ψ ( m ) .
where i + j + + m = k and the coefficients ε i , j , , m are constants, but ε 0 , j , , k j = ε 1 , j , , k j 1 = 0 . Moreover, the space of solutions is 1 6 k ( k 1 ) ( k + 1 ) -dimensional, for all τ, λ and μ.
Proof. 
The proof follows the proof of Proposition 2 by putting ξ = 1 . In this case, the space of solutions is 1 6 k ( k 1 ) ( k + 1 ) -dimensional, spanned by
ε r , s , t , v , w h e r e r + s + t + v = k , 0 s , t , v k 2 and 2 r k .

5. H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν )

In this section, we will compute H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) . The following theorem is our main result:
Theorem 2.
(1) If τ + μ + λ = ν 1 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) = ( 0 , 0 , 0 ) , 0 otherwise .
(2) If τ + μ + λ = ν 2 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) ( 0 , 0 , 0 ) , ( 1 2 , 0 , 0 ) , ( 0 , 1 2 , 0 ) , ( 0 , 0 , 1 2 ) , 0 otherwise .
(3) If τ + μ + λ = ν 3 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) ( 1 3 , 0 , 0 ) , ( 0 , 1 3 , 0 ) , ( 0 , 0 , 1 3 ) , ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , ( 1 2 , 1 2 , 0 ) , ( 1 2 , 0 , 1 2 ) , ( 0 , 1 2 , 1 2 ) , 0 otherwise .
(4) If τ + μ + λ = ν 4 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) ( 2 3 , 0 , 0 ) , ( 0 , 2 3 , 0 ) , ( 0 , 0 , 2 3 ) , ( 1 3 , 1 3 , 0 ) , ( 1 3 , 0 , 1 3 ) , ( 0 , 1 3 , 1 3 ) , ( 3 2 , 0 , 0 ) , ( 0 , 3 2 , 0 ) , ( 0 , 0 , 3 2 ) , ( 1 , 1 2 , 0 ) , ( 1 , 0 , 1 2 ) , ( 1 2 , 1 , 0 ) , ( 1 2 , 0 , 1 ) , ( 0 , 1 , 1 2 ) , ( 0 , 1 2 , 1 ) , ( 1 2 , 1 2 , 1 2 ) , 0 otherwise .
(5) If τ + μ + λ = ν 5 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , ( 2 3 , 1 3 , 0 ) , ( 2 3 , 0 , 1 3 ) , ( 0 , 2 3 , 1 3 ) , ( 0 , 1 3 , 2 3 ) , ( 1 3 , 0 , 2 3 ) , ( 1 3 , 2 3 , 0 ) , ( 2 , 0 , 0 ) , ( 0 , 2 , 0 ) , ( 0 , 0 , 2 ) , ( 3 2 , 1 2 , 0 ) , ( 3 2 , 0 , 1 2 ) , ( 1 2 , 3 2 , 0 ) , ( 1 2 , 0 , 3 2 ) , ( 0 , 3 2 , 1 2 ) , ( 1 , 1 , 0 ) , ( 1 , 0 , 1 ) , ( 0 , 1 , 1 ) , ( 1 , 1 2 , 1 2 ) , ( 1 2 , 1 , 1 2 ) , ( 1 2 , 1 2 , 1 ) , ( 1 3 , 1 3 , 1 3 ) , 0 otherwise .
(6) If τ + μ + λ = ν 6 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) ( 2 , 1 3 , 0 ) , ( 2 3 , 2 3 , 0 ) , ( 0 , 2 , 0 ) , ( 2 3 , 0 , 2 3 ) , ( 1 3 , 2 , 0 ) , ( 1 3 , 2 3 , 1 3 ) , ( 1 3 , 0 , 2 ) , ( 1 3 , 1 3 , 2 3 ) , ( 0 , 2 , 1 3 ) , ( 0 , 3 2 , 1 ) , ( 0 , 1 3 , 2 ) , ( 1 , 1 , 1 2 ) , ( 0 , 2 3 , 2 3 ) , ( 1 2 , 3 2 , 1 2 ) , ( 2 , 1 2 , 0 ) , ( 2 , 0 , 1 2 ) , ( 3 2 , 1 , 0 ) , ( 3 2 , 1 2 , 1 2 ) , ( 3 2 , 0 , 1 ) , ( 1 , 3 2 , 0 ) , ( 0 , 0 , 2 ) , ( 1 , 1 2 , 1 ) , ( 1 , 0 , 3 2 ) , ( 1 2 , 2 , 0 ) , ( 5 2 , 0 , 0 ) , ( 1 2 , 1 , 1 ) , ( 0 , 0 , 5 2 ) , ( 1 2 , 0 , 2 ) , ( 0 , 5 2 , 0 ) , ( 0 , 2 , 1 2 ) , ( 2 3 , 1 3 , 1 3 ) , ( 1 2 , 1 2 , 3 2 ) , 0 otherwise .
(7) If τ + μ + λ = ν 7 , then
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) R if ( τ , λ , μ ) ( 1 3 , 4 3 , 0 ) , ( 1 3 , 0 , 4 3 ) , ( 0 , 5 3 , 0 ) , ( 0 , 0 , 5 3 ) , ( 0 , 1 , 2 3 ) , ( 0 , 2 3 , 1 ) , ( 0 , 1 3 , 4 3 ) , ( 3 , 0 , 0 ) , ( 1 2 , 0 , 5 2 ) , ( 0 , 3 , 0 ) , ( 5 2 , 1 2 , 0 ) , ( 5 2 , 0 , 1 2 ) , ( 1 2 , 5 2 , 0 ) , ( 1 2 , 0 , 5 2 ) , ( 2 , 1 , 0 ) , ( 2 , 0 , 1 ) , ( 1 , 2 , 0 ) , ( 1 , 0 , 2 ) , ( 0 , 2 , 1 ) , ( 1 2 , 1 2 , 2 ) , ( 1 2 , 2 , 1 2 ) , ( 2 , 1 2 , 1 2 ) , ( 3 2 , 0 , 3 2 ) , ( 3 2 , 3 2 , 0 ) , ( 0 , 3 2 , 3 2 ) , ( 1 , 1 , 1 ) , ( 1 , 3 2 , 1 2 ) , ( 1 2 , 3 2 , 1 ) , ( 1 2 , 1 , 3 2 ) , ( 0 , 1 , 2 ) , ( 3 2 , 1 , 1 2 ) , ( 1 , 1 2 , 3 2 ) , ( 0 , 0 , 3 ) , ( 3 2 , 1 2 , 1 ) , 0 otherwise .
(8) If ν τ μ λ is is not like the above but τ, λ and μ are generic then,
d i m H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) = 0 .
Before proving Theorem 2, we need the proposition in which we describe the trilinear Hom aff ( 1 ) from F τ F λ F μ to F τ + λ + μ + k .
Proposition 4.
There exist trilinear Hom aff ( 1 ) :
K k τ , λ , μ : F τ F λ F μ F τ + λ + μ + k ( φ , ϕ , ψ ) K k τ , λ , μ ( φ , ϕ , ψ ) = i + j + = k γ i , j , φ ( i ) ϕ ( j ) ψ ( ) , i + j + = k .
where the coefficients γ i , j , are constants.
Then the space of solutions is 1 2 ( k + 1 ) ( k + 2 ) -dimensional if τ, λ and μ are generic.
Proof. 
Any DO K k τ , λ , μ : F τ F λ F μ F τ + λ + μ + k is of the form (9), where γ i , j , are functions. The aff ( 1 ) -invariant property of the operator K k τ , λ , μ reads as follows:
L X ν K k τ , λ , μ ( φ , ϕ , ψ , ) = K k τ , λ , μ ( L X τ φ , ϕ , ψ ) + K k τ , λ , μ ( φ , L X λ ϕ , ψ ) + K k τ , λ , μ ( φ , ϕ , L X μ ψ ) .
The invariant property with respect to X = d d x (respectively, X = x d d x ) implies that γ i , j , = 0 (respectively, ν = τ + λ + μ + k ). Hence, the space of solutions is 1 2 ( k + 1 ) ( k + 2 ) -dimensional if τ , λ and μ are generic, spanned by
γ 0 , 0 , k , γ 0 , 1 , k 1 , , γ 0 , k , 0 , γ 1 , 0 , k 1 , γ 1 , 1 , k 2 , , γ 1 , k 1 , 0 , γ k 1 , 0 , 1 , γ k 1 , 1 , 0 , γ k , 0 , 0 .
Proof of Theorem 2.
We continue by performing the three steps to prove Theorem 2:
1.
The dimension of the operator space that satisfies the 1-cocycle condition will be investigated.
2.
We will look into all 1-cocycles that are trivial, specifically, operators with the form
L X B ,
where B is a trilinear DO . As our 1-cocycles vanishes on aff ( 1 ) , it follows that B coincides with K k τ , λ , μ .
3.
Depending on τ , λ and μ and using Part 1 and Part 2, the dimension of H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) will be equal to
dim DO that are 1 - cocycles dim DO of the form L X K k τ , λ , μ .
Now, it is obvious that the coboundary L X K k τ , λ , μ has the following form:
L X K k τ , λ , μ ( X , φ , ϕ , ψ ) = i + j + + m = k + 1 Ξ i , j , , m X ( i ) φ ( j ) ϕ ( ) ψ ( m ) ,
where
Ξ 0 , j , , m = Ξ 1 , j , , m = 0 .
The following Lemma, which is proved directly, will be useful in the proof of Theorem 2.
Lemma 3.
For τ , λ , μ R
Ξ α , β , γ , k α β γ + 1 = α + β 1 α + τ α + β 1 α 1 ) γ α + β 1 , γ , k α β γ + 1 α + γ 1 α + λ α + γ 1 α 1 γ β , α + γ 1 , k α β γ + 1 k β γ α + μ k β γ α 1 γ β , γ , k β γ ,
where α 2 and β , γ 0 .
Proof. 
By a direct computation. □
We need also the following lemma.
Lemma 4.
Every 1-cocycle on V ( RP 1 ) with values in D τ , λ , μ ; ν is differentiable.
Proof. 
See [10]. □
Now, we can prove Theorem (2). By Lemma (4), any 1-cocycle on V ( RP 1 ) should retain the general form given by
t ( X , φ , ϕ , ψ ) = i + j + + m = k t i , j , , m X ( i ) φ ( j ) ϕ ( ) ψ ( m ) ,
where t i , j , , m are constants. The fact that this 1-cocycle vanishes on aff ( 1 ) implies that
t 0 , j , , m = t 1 , j , , m = 0 .
The 1-cocycle condition reads as follows: for all φ F τ , for all ϕ F λ , for all ψ F μ and for all X V ( RP 1 ) , one has
t ( [ X , Y ] , φ , ϕ , ψ ) L X τ , λ , μ ; ν t ( Y , φ , ϕ , ψ ) + L Y τ , λ , μ ; ν t ( X , φ , ϕ , ψ ) = 0 .

5.1. The Case where τ + μ + λ = ν 1

By Proposition 3, the 1-cocycle (25) can be expressed as follows:
t ( X , φ , ϕ , ψ ) = t 2 , 0 , 0 , 0 X φ ϕ ψ .
Directly, it is clear that the 1-cocycle condition is always satisfied. Let us investigate the triviality of this 1-cocycle. A straightforward calculation proves that
L X K 1 τ , λ , μ = Ξ 2 , 0 , 0 , 0 X φ ϕ ψ = ( τ γ 1 , 0 , 0 + λ γ 0 , 1 , 0 + μ γ 0 , 0 , 1 ) X φ ϕ ψ .
We have to distinguish two subcases:
  • For ( τ , λ , μ ) = ( 0 , 0 , 0 ) , the coefficient Ξ 2 , 0 , 0 , 0 vanishes, then the coefficient t 2 , 0 , 0 , 0 cannot be eliminated by adding a coboundary. Hence, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one.
  • For ( τ , λ , μ ) ( 0 , 0 , 0 ) , we have Ξ 2 , 0 , 0 , 0 0 , then we can see that the coefficient t 2 , 0 , 0 , 0 can be eliminated. Hence, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is trivial.

5.1.1. The Case Where τ + μ + λ = ν 2

By Proposition 3, the 1-cocycle (25) can be stated as follows:
t ( X , φ , ϕ , ψ ) = t 3 , 0 , 0 , 0 X φ ϕ ψ + t 2 , 1 , 0 , 0 X φ ϕ ψ + t 2 , 0 , 1 , 0 X φ ϕ ψ + t 2 , 0 , 0 , 1 X φ ϕ ψ .
Directly, it is clear that the 1-cocycle condition is always satisfied. Let us investigate the triviality of this 1-cocycle. A straightforward calculation proves that
L X K 2 τ , λ , μ = Ξ 3 , 0 , 0 , 0 X φ ϕ ψ + Ξ 2 , 1 , 0 , 0 X φ ϕ ψ + Ξ 2 , 0 , 1 , 0 X φ ϕ ψ + Ξ 2 , 0 , 0 , 1 X φ ϕ ψ ,
where
Ξ 3 , 0 , 0 , 0 = τ γ 2 , 0 , 0 λ γ 0 , 2 , 0 μ γ 0 , 0 , 2 , Ξ 2 , 1 , 0 , 0 = ( 2 τ + 1 ) γ 2 , 0 , 0 λ γ 1 , 1 , 0 μ γ 1 , 0 , 1 , Ξ 2 , 0 , 1 , 0 = τ γ 1 , 1 , 0 ( 2 λ + 1 ) γ 0 , 2 , 0 μ γ 0 , 1 , 1 , Ξ 2 , 0 , 0 , 1 = τ γ 1 , 0 , 1 λ γ 0 , 1 , 1 ( 2 μ + 1 ) γ 0 , 0 , 2 .
We have to distinguish five subcases:
  • For ( τ , λ , μ ) = ( 0 , 0 , 0 ) , the coefficient Ξ 3 , 0 , 0 , 0 vanishes, then the coefficient t 3 , 0 , 0 , 0 cannot be eliminated by adding a coboundary. Furthermore, the coefficients t 2 , 1 , 0 , 0 , t 2 , 0 , 1 , 0 and t 2 , 0 , 0 , 1 can be eliminated because Ξ 2 , 1 , 0 , 0 , Ξ 2 , 0 , 1 , 0 and Ξ 2 , 0 , 0 , 1 are nonzero. Hence, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one.
  • For ( τ , λ , μ ) = ( 1 2 , 0 , 0 ) , the coefficient Ξ 2 , 1 , 0 , 0 vanishes, then the coefficient t 2 , 1 , 0 , 0 cannot be eliminated by adding a coboundary. Furthermore, we have that the coefficients Ξ 3 , 0 , 0 , 0 , Ξ 2 , 0 , 1 , 0 and Ξ 2 , 0 , 0 , 1 are nonzero, then the coefficients t 3 , 0 , 0 , 0 , t 2 , 0 , 1 , 0 and t 2 , 0 , 0 , 1 can be eliminated. Hence, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one.
  • For ( τ , λ , μ ) = ( 0 , 1 2 , 0 ) , the coefficient Ξ 2 , 0 , 1 , 0 vanishes, then the coefficient t 2 , 0 , 1 , 0 cannot be eliminated by adding a coboundary. Furthermore, we have that the coefficients Ξ 3 , 0 , 0 , 0 , Ξ 2 , 1 , 0 , 0 and Ξ 2 , 0 , 0 , 1 are nonzero, and then the coefficients t 3 , 0 , 0 , 0 , t 2 , 1 , 0 , 0 and t 2 , 0 , 0 , 1 can be eliminated. Hence, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one.
  • For ( τ , λ , μ ) = ( 0 , 0 , 1 2 ) , the coefficient Ξ 2 , 0 , 0 , 1 vanishes, then the coefficient t 2 , 0 , 0 , 1 cannot be eliminated by adding a coboundary. Furthermore, we have the coefficients Ξ 3 , 0 , 0 , 0 , Ξ 2 , 1 , 0 , 0 and Ξ 2 , 0 , 1 , 0 are nonzero, and then the coefficients t 3 , 0 , 0 , 0 , t 2 , 1 , 0 , 0 and t 2 , 0 , 1 , 0 can be eliminated. Hence, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one.
  • For ( τ , λ , μ ) ( 0 , 0 , 0 ) , ( 1 2 , 0 , 0 ) , ( 0 , 1 2 , 0 ) , ( 0 , 0 , 1 2 ) , H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is trivial since the coefficients t 3 , 0 , 0 , 0 , t 2 , 1 , 0 , 0 , t 2 , 0 , 1 , 0 and t 2 , 0 , 0 , 1 can be eliminated because Ξ 3 , 0 , 0 , 0 , Ξ 2 , 1 , 0 , 0 , Ξ 2 , 0 , 1 , 0 and Ξ 2 , 0 , 0 , 1 are nonzero.

5.1.2. The Case where ν τ λ μ 3

The 1-cocycle condition is equivalent to the system
m + q 1 m + τ m + q 1 m 1 t p , m + q 1 , i , j p + q 1 p + τ p + q 1 p 1 t m , p + q 1 , i , j + m + i 1 m + λ m + i 1 m 1 t p , q , m + i 1 , j p + i 1 p + λ p + i 1 p 1 t m , q , p + i 1 , j + m + j 1 m + μ m + j 1 m 1 t p , q , i , m + j 1 p + j 1 p + μ p + j 1 p 1 t m , q , i , p + j 1 + m + p 1 m m + p 1 m 1 t m + p 1 , q , i , j = 0 ,
where m + p + q + i + j = k + 1 and m > p 2 , obtained from the coefficient of X ( m ) Y ( p ) φ ( q ) ϕ ( i ) ψ ( j ) .
By a simple computation, we can deduce this system. There is, of course, at least one solution to such a system, where the solutions t r , s , u , v are exactly the coefficients Ξ r , s , u , v of the coboundaries (24).
The case when τ + μ + λ = ν 3
By Proposition 3, the space of solutions is spanned by
t 4 , 0 , 0 , 0 , t 3 , 1 , 0 , 0 , t 3 , 0 , 1 , 0 , t 3 , 0 , 0 , 1 , t 2 , 2 , 0 , 0 , t 2 , 1 , 1 , 0 , t 2 , 1 , 0 , 1 , t 2 , 0 , 2 , 0 , t 2 , 0 , 1 , 1 , t 2 , 0 , 0 , 2 .
Furthermore, we can construct the following equation using formula (26):
2 t 4 , 0 , 0 , 0 + τ t 2 , 2 , 0 , 0 τ t 3 , 1 , 0 , 0 + λ t 2 , 0 , 2 , 0 λ t 3 , 0 , 1 , 0 + μ t 2 , 0 , 0 , 2 μ t 3 , 0 , 0 , 1 = 0 .
Thus, we just showed that the coefficients of each 1-cocycle are expressed in terms of
t 3 , 1 , 0 , 0 , t 3 , 0 , 1 , 0 , t 3 , 0 , 0 , 1 , t 2 , 2 , 0 , 0 , t 2 , 1 , 1 , 0 , t 2 , 1 , 0 , 1 , t 2 , 0 , 2 , 0 , t 2 , 0 , 1 , 1 , t 2 , 0 , 0 , 2 .
With a direct computation, we confirm that the coefficients of L X K 3 τ , λ , μ are expressed in terms of
Ξ 3 , 1 , 0 , 0 = ( 3 τ + 1 ) γ 3 , 0 , 0 λ γ 1 , 2 , 0 μ γ 1 , 0 , 2 , Ξ 3 , 0 , 1 , 0 = τ γ 2 , 1 , 0 ( 3 λ + 1 ) γ 0 , 3 , 0 μ γ 0 , 1 , 2 , Ξ 3 , 0 , 0 , 1 = τ γ 2 , 0 , 1 λ γ 0 , 2 , 1 ( 3 μ + 1 ) γ 0 , 0 , 3 , Ξ 2 , 0 , 1 , 1 = τ γ 1 , 1 , 1 ( 2 λ + 1 ) γ 0 , 2 , 1 ( 2 μ + 1 ) γ 0 , 1 , 2 , Ξ 2 , 0 , 2 , 0 = τ γ 1 , 2 , 0 3 ( λ + 1 ) γ 0 , 3 , 0 μ γ 0 , 2 , 1 , Ξ 2 , 1 , 0 , 1 = ( 2 τ + 1 ) γ 2 , 0 , 1 λ γ 1 , 1 , 1 ( 2 μ + 1 ) γ 1 , 0 , 2 , Ξ 2 , 0 , 0 , 2 = τ γ 1 , 0 , 2 λ γ 0 , 1 , 2 3 ( μ + 1 ) γ 0 , 0 , 3 , Ξ 2 , 1 , 1 , 0 = ( 2 τ + 1 ) γ 2 , 1 , 0 ( 2 λ + 1 ) γ 1 , 2 , 0 μ γ 1 , 1 , 1 , Ξ 2 , 2 , 0 , 0 = 3 ( τ + 1 ) γ 3 , 0 , 0 λ γ 2 , 1 , 0 μ γ 2 , 0 , 1 .
Then, for ( τ , λ , μ ) ( 1 3 , 0 , 0 ) , ( 0 , 1 3 , 0 ) , ( 0 , 0 , 1 3 ) , ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , ( 1 2 , 1 2 , 0 ) , ( 1 2 , 0 , 1 2 ) , ( 0 , 1 2 , 1 2 ) , only one of the coefficients t 3 , 1 , 0 , 0 , t 3 , 0 , 1 , 0 , t 3 , 0 , 0 , 1 , t 2 , 2 , 0 , 0 , t 2 , 0 , 2 , 0 , t 2 , 0 , 0 , 2 , t 2 , 1 , 1 , 0 , t 2 , 1 , 0 , 1 , or t 2 , 0 , 1 , 1 cannot be eliminated by adding a coboundary, so H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one. While τ , λ and μ are not like the above, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is trivial since the coefficients t 3 , 1 , 0 , 0 , t 3 , 0 , 1 , 0 , t 3 , 0 , 0 , 1 , t 2 , 2 , 0 , 0 , t 2 , 0 , 2 , 0 , t 2 , 0 , 0 , 2 , t 2 , 1 , 1 , 0 , t 2 , 1 , 0 , 1 , and t 2 , 0 , 1 , 1 can be eliminated because Ξ 3 , 1 , 0 , 0 , Ξ 3 , 0 , 1 , 0 , Ξ 3 , 0 , 0 , 1 , Ξ 2 , 2 , 0 , 0 , Ξ 2 , 0 , 2 , 0 , Ξ 2 , 0 , 0 , 2 , Ξ 2 , 1 , 1 , 0 , Ξ 2 , 1 , 0 , 1 , and Ξ 2 , 0 , 1 , 1 are nonzero.
The case when τ + μ + λ = ν 4
By Proposition 3, the space of solutions is spanned by
t n , m , p , q , where n + m + p + q = 5 , 0 m , p , q 3 and 2 n 5 .
Furthermore, we can construct the following system using formula (26):
( 3 τ + 1 ) t 2 , 3 , 0 , 0 ( 2 τ + 1 ) t 3 , 2 , 0 , 0 + λ t 2 , 1 , 2 , 0 λ t 3 , 1 , 1 , 0 + μ t 2 , 1 , 0 , 2 μ t 3 , 1 , 0 , 1 = 2 t 4 , 1 , 0 , 0 , τ t 2 , 2 , 1 , 0 τ t 3 , 1 , 1 , 0 + ( 3 λ + 1 ) t 2 , 0 , 3 , 0 ( 2 λ + 1 ) t 3 , 0 , 2 , 0 + μ t 2 , 0 , 1 , 2 μ t 3 , 0 , 1 , 1 = 2 t 4 , 0 , 1 , 0 , τ t 2 , 2 , 0 , 1 τ t 3 , 1 , 0 , 1 + λ t 2 , 0 , 2 , 1 λ t 3 , 0 , 1 , 1 + ( 3 μ + 1 ) t 2 , 0 , 0 , 3 ( 2 μ + 1 ) t 3 , 0 , 0 , 2 = 2 t 4 , 0 , 0 , 1 , τ t 2 , 3 , 0 , 0 τ t 4 , 1 , 0 , 0 + λ t 2 , 0 , 3 , 0 τ t 4 , 0 , 1 , 0 + μ t 2 , 0 , 0 , 3 μ t 4 , 0 , 0 , 1 = 5 t 5 , 0 , 0 , 0 .
With a direct computation, we confirm that the coefficients of L X K 4 τ , λ , μ are expressed in terms of
Ξ 3 , 1 , 1 , 0 = ( 3 τ + 1 ) γ 3 , 1 , 0 ( 3 λ + 1 ) γ 1 , 3 , 0 μ γ 1 , 1 , 2 , Ξ 3 , 2 , 0 , 0 = 2 ( 3 τ + 2 ) γ 4 , 0 , 0 λ γ 2 , 2 , 0 μ γ 2 , 0 , 2 , Ξ 3 , 1 , 0 , 1 = ( 3 τ + 1 ) γ 3 , 0 , 1 λ γ 1 , 2 , 1 ( 3 μ + 1 ) γ 1 , 0 , 3 , Ξ 3 , 0 , 2 , 0 = τ γ 2 , 2 , 0 2 ( 3 λ + 2 ) γ 0 , 4 , 0 μ γ 0 , 2 , 2 , Ξ 3 , 0 , 1 , 1 = τ γ 2 , 1 , 1 ( 3 λ + 1 ) γ 0 , 3 , 1 ( 3 μ + 1 ) γ 1 , 0 , 3 , Ξ 3 , 0 , 0 , 2 = τ γ 2 , 0 , 2 λ γ 0 , 2 , 2 2 ( 3 μ + 2 ) γ 0 , 0 , 4 , Ξ 2 , 2 , 1 , 0 = 3 ( τ + 1 ) γ 3 , 1 , 0 ( 2 λ + 1 ) γ 2 , 2 , 0 μ γ 2 , 1 , 1 , Ξ 2 , 3 , 0 , 0 = 2 ( 2 τ + 3 ) γ 4 , 0 , 0 λ γ 3 , 1 , 0 μ γ 3 , 0 , 1 , Ξ 2 , 0 , 2 , 1 = τ γ 1 , 2 , 1 3 ( λ + 1 ) γ 0 , 3 , 1 ( 2 μ + 1 ) γ 0 , 2 , 2 , Ξ 2 , 0 , 3 , 0 = τ γ 1 , 3 , 0 2 ( 2 λ + 3 ) γ 0 , 4 , 0 μ γ 0 , 3 , 1 , Ξ 2 , 2 , 0 , 1 = 3 ( τ + 1 ) γ 3 , 0 , 1 λ γ 2 , 1 , 1 ( 2 μ + 1 ) γ 2 , 0 , 2 , Ξ 2 , 0 , 0 , 3 = τ γ 1 , 0 , 3 λ γ 0 , 1 , 3 2 ( 2 μ + 3 ) γ 0 , 0 , 4 , Ξ 2 , 1 , 0 , 2 = ( 2 τ + 1 ) γ 2 , 0 , 2 λ γ 1 , 1 , 2 3 ( μ + 1 ) γ 1 , 0 , 3 , Ξ 2 , 0 , 1 , 2 = τ γ 1 , 1 , 2 ( 2 λ + 1 ) γ 0 , 2 , 2 3 ( μ + 1 ) γ 0 , 1 , 3 , Ξ 2 , 1 , 2 , 0 = ( 2 τ + 1 ) γ 2 , 2 , 0 3 ( λ + 1 ) γ 1 , 3 , 0 μ γ 1 , 2 , 1 , Ξ 2 , 1 , 1 , 1 = ( 2 τ + 1 ) γ 2 , 1 , 1 ( 2 λ + 1 ) γ 1 , 2 , 1 ( 2 μ + 1 ) γ 1 , 1 , 2 .
Hence, in the same way as the previous cases, we prove that H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one for ( τ , λ , μ ) { ( 2 3 , 0 , 0 ) , ( 0 , 2 3 , 0 ) , ( 0 , 0 , 2 3 ) , ( 1 3 , 1 3 , 0 ) , ( 1 3 , 0 , 1 3 ) , ( 0 , 1 3 , 1 3 ) , . . ( 3 2 , 0 , 0 ) , ( 0 , 3 2 , 0 ) , ( 0 , 0 , 3 2 ) , ( 1 , 1 2 , 0 ) , ( 1 , 0 , 1 2 ) , ( 1 2 , 1 , 0 ) , ( 1 2 , 0 , 1 ) , ( 0 , 1 , 1 2 ) , . ( 0 , 1 2 , 1 ) , ( 1 2 , 1 2 , 1 2 ) . While τ , λ and μ are not like the above, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is trivial.
The case when τ + μ + λ = ν 5
By Proposition 3, the space of solutions is spanned by
t n , m , p , q , where n + m + p + q = 6 , 0 m , p , q 4 and 2 n 6 .
Furthermore, we can construct the following system using formula (26):
τ t 2 , 4 , 0 , 0 τ t 5 , 1 , 0 , 0 + λ t 2 , 0 , 4 , 0 λ t 5 , 0 , 1 , 0 + μ t 2 , 0 , 0 , 4 μ t 5 , 0 , 0 , 1 = 9 t 6 , 0 , 0 , 0 , τ t 3 , 3 , 0 , 0 μ t 4 , 2 , 0 , 0 + λ t 3 , 0 , 3 , 0 μ t 4 , 0 , 2 , 0 + μ t 3 , 0 , 0 , 3 μ t 4 , 0 , 0 , 2 = 5 t 6 , 0 , 0 , 0 , ( 4 τ + 1 ) t 2 , 4 , 0 , 0 ( 2 τ + 1 ) t 4 , 2 , 0 , 0 + λ t 2 , 1 , 3 , 0 λ t 4 , 1 , 1 , 0 + μ t 2 , 1 , 0 , 3 μ t 4 , 1 , 0 , 1 = 5 t 5 , 1 , 0 , 0 , τ t 2 , 3 , 1 , 0 τ t 4 , 1 , 1 , 0 + ( 4 λ + 1 ) t 2 , 0 , 4 , 0 ( 2 λ + 1 ) t 4 , 0 , 2 , 0 + μ t 2 , 0 , 1 , 3 μ t 4 , 0 , 1 , 1 = 5 t 5 , 0 , 1 , 0 , τ t 2 , 3 , 0 , 1 τ t 4 , 1 , 0 , 1 + λ t 2 , 0 , 3 , 1 λ t 4 , 0 , 1 , 1 + ( 4 μ + 1 ) t 2 , 0 , 0 , 4 ( 2 μ + 1 ) t 4 , 0 , 0 , 2 = 5 t 5 , 0 , 0 , 1 , 2 ( 3 τ + 2 ) t 2 , 4 , 0 , 0 3 ( τ + 1 ) t 3 , 3 , 0 , 0 + λ t 2 , 2 , 2 , 0 λ t 3 , 2 , 1 , 0 + μ t 2 , 2 , 0 , 2 μ t 3 , 2 , 0 , 1 = 2 c 4 , 2 , 0 , 0 , τ t 2 , 2 , 2 , 0 τ t 3 , 1 , 2 , 0 + 2 ( 3 λ + 2 ) t 2 , 0 , 4 , 0 3 ( λ + 1 ) t 3 , 0 , 3 , 0 + μ t 2 , 0 , 2 , 2 μ t 3 , 0 , 2 , 1 = 2 t 4 , 0 , 2 , 0 , τ t 2 , 2 , 0 , 2 τ t 3 , 1 , 0 , 2 + λ t 2 , 0 , 2 , 2 λ t 3 , 0 , 1 , 2 + 2 ( 3 μ + 2 ) t 2 , 0 , 0 , 4 3 ( μ + 1 ) t 3 , 0 , 0 , 3 = 2 c 4 , 0 , 0 , 2 , ( 3 τ + 1 ) t 2 , 3 , 1 , 0 ( 2 τ + 1 ) t 3 , 2 , 1 , 0 + ( 3 λ + 1 ) t 2 , 1 , 3 , 0 ( 2 λ + 1 ) t 3 , 1 , 2 , 0 + μ t 2 , 1 , 1 , 2 μ t 3 , 1 , 1 , 1 = 2 c 4 , 1 , 1 , 0 , ( 3 τ + 1 ) t 2 , 3 , 0 , 1 ( 2 τ + 1 ) t 3 , 2 , 0 , 1 + λ t 2 , 1 , 2 , 1 λ t 3 , 1 , 1 , 1 + ( 3 μ + 1 ) t 2 , 1 , 0 , 3 ( 2 μ + 1 ) t 3 , 1 , 0 , 2 = 2 t 4 , 1 , 0 , 1 , τ t 2 , 2 , 1 , 1 τ t 3 , 1 , 1 , 1 + ( 3 λ + 1 ) t 2 , 0 , 3 , 1 ( 2 λ + 1 ) t 3 , 0 , 2 , 1 + ( 3 μ + 1 ) t 2 , 0 , 1 , 3 ( 2 μ + 1 ) t 3 , 0 , 1 , 2 = 2 t 4 , 0 , 1 , 1 .
With a direct computation, we confirm that the coefficients of L X K 5 τ , λ , μ are expressed in terms of
Ξ 2 , 4 , 0 , 0 = 5 ( τ + 2 ) γ 5 , 0 , 0 λ γ 4 , 1 , 0 μ γ 4 , 0 , 1 , Ξ 2 , 2 , 2 , 0 = 3 ( τ + 1 ) γ 3 , 2 , 0 3 ( λ + 1 ) γ 2 , 3 , 0 μ γ 2 , 2 , 1 , Ξ 2 , 0 , 4 , 0 = τ γ 1 , 4 , 0 5 ( λ + 2 ) γ 0 , 5 , 0 μ γ 0 , 4 , 1 , Ξ 2 , 0 , 3 , 1 = τ γ 1 , 3 , 1 2 ( 2 λ + 3 ) γ 0 , 4 , 1 ( 2 μ + 1 ) γ 0 , 3 , 2 , Ξ 2 , 0 , 0 , 4 = τ γ 1 , 0 , 4 λ γ 0 , 1 , 4 5 ( μ + 2 ) γ 0 , 0 , 5 , Ξ 2 , 1 , 0 , 3 = ( 2 τ + 1 ) γ 2 , 0 , 3 λ γ 1 , 1 , 3 2 ( 2 μ + 3 ) γ 1 , 0 , 4 , Ξ 3 , 3 , 0 , 0 = 10 ( τ + 1 ) γ 5 , 0 , 0 λ γ 3 , 2 , 0 μ γ 3 , 0 , 2 , Ξ 2 , 1 , 3 , 0 = ( 2 τ + 1 ) γ 2 , 3 , 0 2 ( 2 λ + 3 ) γ 1 , 4 , 0 μ γ 3 , 1 , 1 , Ξ 3 , 0 , 3 , 0 = τ γ 2 , 3 , 0 10 ( λ + 1 ) γ 0 , 5 , 0 μ γ 0 , 3 , 2 , Ξ 2 , 2 , 0 , 2 = 3 ( τ + 1 ) γ 3 , 0 , 2 λ γ 2 , 1 , 2 3 ( μ + 1 ) γ 2 , 0 , 3 , Ξ 3 , 0 , 0 , 3 = τ γ 2 , 0 , 3 λ γ 0 , 2 , 3 10 ( μ + 1 ) γ 0 , 0 , 5 , Ξ 2 , 0 , 2 , 2 = τ γ 1 , 2 , 2 3 ( λ + 1 ) γ 0 , 3 , 2 3 ( μ + 1 ) γ 0 , 2 , 3 .
Ξ 3 , 2 , 1 , 0 = 2 ( 3 τ + 2 ) γ 4 , 1 , 0 ( 3 λ + 1 ) γ 2 , 3 , 0 μ γ 2 , 1 , 2 , Ξ 3 , 2 , 0 , 1 = 2 ( 3 τ + 2 ) γ 4 , 0 , 1 λ γ 2 , 2 , 1 ( 3 μ + 1 ) γ 2 , 0 , 3 , Ξ 3 , 1 , 2 , 0 = ( 3 τ + 1 ) γ 3 , 2 , 0 2 ( 3 λ + 2 ) γ 1 , 4 , 0 μ γ 1 , 2 , 2 , Ξ 3 , 1 , 0 , 2 = ( 3 τ + 1 ) γ 3 , 0 , 2 λ γ 1 , 2 , 2 2 ( 3 μ + 2 ) γ 1 , 0 , 4 , Ξ 3 , 0 , 2 , 1 = τ γ 2 , 2 , 1 2 ( 3 λ + 2 ) γ 0 , 4 , 1 ( 3 μ + 1 ) γ 0 , 2 , 3 , Ξ 3 , 0 , 1 , 2 = τ γ 2 , 1 , 2 ( 3 λ + 1 ) γ 0 , 3 , 2 2 ( 3 μ + 2 ) γ 0 , 1 , 4 , Ξ 2 , 3 , 1 , 0 = 2 ( 2 τ + 3 ) γ 4 , 1 , 0 ( 2 λ + 1 ) γ 3 , 2 , 0 μ γ 3 , 1 , 1 , Ξ 2 , 3 , 0 , 1 = 2 ( 2 τ + 3 ) γ 4 , 0 , 1 λ γ 3 , 1 , 1 ( 2 μ + 1 ) γ 3 , 0 , 2 , Ξ 3 , 1 , 1 , 1 = ( 3 τ + 1 ) γ 3 , 1 , 1 ( 3 λ + 1 ) γ 1 , 3 , 1 ( 3 μ + 1 ) γ 1 , 1 , 3 , Ξ 2 , 1 , 1 , 2 = ( 2 τ + 1 ) γ 2 , 1 , 2 ( 2 λ + 1 ) γ 1 , 2 , 2 3 ( μ + 1 ) γ 1 , 1 , 3 , Ξ 2 , 1 , 2 , 1 = ( 2 τ + 1 ) γ 2 , 2 , 1 3 ( λ + 1 ) γ 1 , 3 , 1 ( 2 μ + 1 ) γ 1 , 2 , 2 , Ξ 2 , 2 , 1 , 1 = 3 ( τ + 1 ) γ 3 , 1 , 1 ( 2 λ + 1 ) γ 2 , 2 , 1 ( 2 μ + 1 ) γ 2 , 1 , 2 .
Thus, in the same way as the previous cases, we prove that H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one for ( τ , λ , μ ) { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , ( 2 3 , 1 3 , 0 ) , ( 2 3 , 0 , 1 3 ) , ( 0 , 2 3 , 1 3 ) , . . ( 0 , 1 3 , 2 3 ) , ( 1 3 , 0 , 2 3 ) , ( 1 3 , 2 3 , 0 ) , ( 2 , 0 , 0 ) , ( 0 , 2 , 0 ) , ( 0 , 0 , 2 ) , ( 3 2 , 1 2 , 0 ) , ( 3 2 , 0 , 1 2 ) , . . ( 1 2 , 3 2 , 0 ) , ( 1 2 , 0 , 3 2 ) , ( 0 , 3 2 , 1 2 ) , ( 1 , 1 , 0 ) , ( 1 , 0 , 1 ) , ( 0 , 1 , 1 ) , ( 1 , 1 2 , 1 2 ) , ( 1 2 , 1 , 1 2 ) , . ( 1 2 , 1 2 , 1 ) , ( 1 3 , 1 3 , 1 3 ) . While τ , λ and μ are not like the above, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is trivial.
The case when τ + μ + λ = ν 6
By Proposition 3, the space of solutions is spanned by
t n , m , p , q , where n + m + p + q = 7 , 0 m , p , q 5 and 2 n 7 .
Furthermore, we can construct the following system using formula (26):
τ t 2 , 5 , 0 , 0 τ t 6 , 1 , 0 , 0 + λ t 2 , 0 , 5 , 0 λ t 6 , 0 , 1 , 0 + μ t 2 , 0 , 0 , 5 μ t 6 , 0 , 0 , 1 = 14 t 7 , 0 , 0 , 0 , τ t 3 , 4 , 0 , 0 μ t 5 , 2 , 0 , 0 + λ t 3 , 0 , 4 , 0 μ t 5 , 0 , 2 , 0 + μ t 3 , 0 , 0 , 4 μ t 5 , 0 , 0 , 2 = 14 t 7 , 0 , 0 , 0 , ( 5 τ + 1 ) t 2 , 5 , 0 , 0 ( 2 τ + 1 ) t 5 , 2 , 0 , 0 + λ t 2 , 1 , 4 , 0 λ t 5 , 1 , 1 , 0 + μ t 2 , 1 , 0 , 4 μ t 5 , 1 , 0 , 1 = 9 t 6 , 1 , 0 , 0 , τ t 2 , 4 , 1 , 0 τ t 5 , 1 , 1 , 0 + ( 5 λ + 1 ) t 2 , 0 , 5 , 0 ( 2 λ + 1 ) t 5 , 0 , 2 , 0 + μ t 2 , 0 , 1 , 4 μ t 5 , 0 , 1 , 1 = 9 t 6 , 0 , 1 , 0 , τ t 2 , 4 , 0 , 1 τ t 5 , 1 , 0 , 1 + λ t 2 , 0 , 4 , 1 λ t 5 , 0 , 1 , 1 + ( 5 μ + 1 ) t 2 , 0 , 0 , 5 ( 2 μ + 1 ) t 5 , 0 , 0 , 2 = 9 t 6 , 0 , 0 , 1 , ( 4 τ + 1 ) t 3 , 4 , 0 , 0 ( 3 τ + 1 ) t 4 , 3 , 0 , 0 + λ t 3 , 1 , 3 , 0 λ t 4 , 1 , 2 , 0 + μ t 3 , 1 , 0 , 3 μ t 4 , 1 , 0 , 2 = 5 t 6 , 1 , 0 , 0 , τ t 3 , 3 , 1 , 0 τ t 4 , 2 , 1 , 0 + ( 4 λ + 1 ) t 3 , 0 , 4 , 0 ( 3 λ + 1 ) t 4 , 0 , 3 , 0 + μ t 3 , 0 , 1 , 3 μ t 4 , 0 , 1 , 2 = 5 t 6 , 0 , 1 , 0 , τ t 3 , 3 , 0 , 1 τ t 4 , 2 , 0 , 1 + λ t 3 , 0 , 3 , 1 λ t 4 , 0 , 2 , 1 + ( 4 μ + 1 ) t 3 , 0 , 0 , 4 ( 3 μ + 1 ) t 4 , 0 , 0 , 3 = 5 t 6 , 0 , 0 , 1 , 5 ( τ + 1 ) t 2 , 5 , 0 , 0 3 ( τ + 1 ) t 4 , 3 , 0 , 0 + λ t 2 , 2 , 3 , 0 λ t 4 , 2 , 1 , 0 + μ t 2 , 2 , 0 , 3 μ t 4 , 2 , 0 , 1 = t 5 , 2 , 0 , 0 , τ t 2 , 3 , 2 , 0 τ t 4 , 1 , 2 , 0 + 5 ( λ + 1 ) t 2 , 0 , 5 , 0 3 ( λ + 1 ) t 4 , 0 , 3 , 0 + μ t 2 , 0 , 2 , 3 μ t 4 , 0 , 2 , 1 = 5 t 5 , 0 , 2 , 0 , τ t 2 , 3 , 0 , 2 τ t 4 , 1 , 0 , 2 + λ t 2 , 0 , 3 , 2 λ t 4 , 0 , 1 , 2 + 5 ( μ + 1 ) t 2 , 0 , 0 , 5 3 ( μ + 1 ) t 4 , 0 , 0 , 3 = 5 t 5 , 0 , 0 , 2 , τ t 2 , 2 , 0 , 3 τ t 3 , 1 , 0 , 3 + λ t 2 , 0 , 2 , 3 λ t 3 , 0 , 1 , 3 + 10 ( μ + 1 ) t 2 , 0 , 0 , 5 2 ( 2 μ + 3 ) t 3 , 0 , 0 , 4 = 2 t 4 , 0 , 0 , 3 ,
10 ( τ + 1 ) t 2 , 5 , 0 , 0 2 ( 2 τ + 3 ) t 3 , 4 , 0 , 0 + λ t 2 , 3 , 2 , 0 λ t 3 , 3 , 1 , 0 + μ t 2 , 3 , 0 , 2 μ t 3 , 3 , 0 , 1 = 2 t 4 , 3 , 0 , 0 , τ t 2 , 2 , 3 , 0 τ t 3 , 1 , 3 , 0 + 10 ( λ + 1 ) t 2 , 0 , 5 , 0 2 ( 2 λ + 3 ) t 3 , 0 , 4 , 0 + μ t 2 , 0 , 3 , 2 μ t 3 , 0 , 3 , 1 = 2 t 4 , 0 , 3 , 0 , ( 4 τ + 1 ) t 2 , 4 , 1 , 0 ( 2 τ + 1 ) t 4 , 2 , 1 , 0 + ( 4 λ + 1 ) t 2 , 1 , 4 , 0 ( 2 λ + 1 ) t 4 , 1 , 2 , 0 + μ t 2 , 1 , 1 , 3 μ t 4 , 1 , 1 , 1 = 5 t 5 , 1 , 1 , 0 , ( 4 τ + 1 ) t 2 , 4 , 0 , 1 ( 2 τ + 1 ) t 4 , 2 , 0 , 1 + λ t 2 , 1 , 3 , 1 λ t 4 , 1 , 1 , 1 + ( 4 μ + 1 ) t 2 , 1 , 0 , 4 ( 2 μ + 1 ) t 4 , 1 , 0 , 2 = 5 t 5 , 1 , 0 , 1 , τ t 2 , 3 , 1 , 1 τ t 4 , 1 , 1 , 1 + ( 4 λ + 1 ) t 2 , 0 , 4 , 1 ( 2 λ + 1 ) t 4 , 0 , 2 , 1 + ( 4 μ + 1 ) t 2 , 0 , 1 , 4 ( 2 μ + 1 ) t 4 , 0 , 1 , 2 = 5 t 5 , 0 , 1 , 1 , 2 ( 3 τ + 2 ) t 2 , 4 , 1 , 0 3 ( τ + 1 ) t 3 , 3 , 1 , 0 + ( 3 λ + 1 ) t 2 , 2 , 3 , 0 ( 2 λ + 1 ) t 3 , 2 , 2 , 0 + μ t 2 , 2 , 1 , 2 μ t 3 , 2 , 1 , 1 = 2 t 4 , 2 , 1 , 0 , 2 ( 3 τ + 2 ) t 2 , 4 , 0 , 1 3 ( τ + 1 ) t 3 , 3 , 0 , 1 + λ t 2 , 2 , 2 , 1 λ t 3 , 2 , 1 , 1 + ( 3 μ + 1 ) t 2 , 2 , 0 , 3 ( 2 μ + 1 ) t 3 , 2 , 0 , 2 = 2 t 4 , 2 , 0 , 1 , ( 3 τ + 1 ) t 2 , 3 , 2 , 0 ( 2 τ + 1 ) t 3 , 2 , 2 , 0 + 2 ( 3 λ + 2 ) t 2 , 1 , 4 , 0 3 ( λ + 1 ) t 3 , 1 , 3 , 0 + μ t 2 , 1 , 2 , 2 μ t 3 , 1 , 2 , 1 = 2 t 4 , 1 , 2 , 0 , ( 3 τ + 1 ) t 2 , 3 , 0 , 2 ( 2 τ + 1 ) t 3 , 2 , 0 , 2 + λ t 2 , 1 , 2 , 2 λ t 3 , 1 , 1 , 2 + 2 ( 3 μ + 2 ) t 2 , 1 , 0 , 4 3 ( μ + 1 ) t 3 , 1 , 0 , 3 = 2 t 4 , 1 , 0 , 2 , τ t 2 , 2 , 2 , 1 τ t 3 , 1 , 2 , 1 + 2 ( 3 λ + 2 ) t 2 , 0 , 4 , 1 3 ( λ + 1 ) t 3 , 0 , 3 , 1 + ( 3 μ + 1 ) t 2 , 0 , 2 , 3 ( 2 μ + 1 ) t 3 , 0 , 2 , 2 = 2 t 4 , 0 , 2 , 1 , τ t 2 , 2 , 1 , 2 τ t 3 , 1 , 1 , 2 + ( 3 λ + 1 ) t 2 , 0 , 3 , 2 ( 2 λ + 1 ) t 3 , 0 , 2 , 2 + 2 ( 3 μ + 2 ) t 2 , 0 , 1 , 4 3 ( μ + 1 ) t 3 , 0 , 1 , 3 = 2 t 4 , 0 , 1 , 2 , ( 3 τ + 1 ) t 2 , 3 , 1 , 1 ( 2 τ + 1 ) t 3 , 2 , 1 , 1 + ( 3 λ + 1 ) t 2 , 1 , 3 , 1 ( 2 λ + 1 ) t 3 , 1 , 2 , 1 + ( 3 μ + 1 ) t 2 , 1 , 1 , 3 ( 2 μ + 1 ) t 3 , 1 , 1 , 2 = 2 t 4 , 1 , 1 , 1 .
With a direct computation, we confirm that the coefficients of L X K 6 τ , λ , μ are expressed in terms of
Ξ 3 , 0 , 4 , 0 = τ γ 2 , 4 , 0 10 ( λ + 2 ) γ 0 , 6 , 0 μ γ 0 , 4 , 2 , Ξ 3 , 2 , 0 , 2 = 2 ( 3 τ + 2 ) γ 4 , 0 , 2 λ γ 2 , 2 , 2 2 ( 3 μ + 2 ) γ 2 , 0 , 4 , Ξ 3 , 0 , 0 , 4 = τ γ 2 , 0 , 4 λ γ 0 , 2 , 4 10 ( μ + 2 ) γ 0 , 0 , 6 , Ξ 2 , 1 , 4 , 0 = ( 2 τ + 1 ) γ 2 , 4 , 0 5 ( λ + 2 ) γ 1 , 5 , 0 μ γ 1 , 4 , 1 , Ξ 2 , 5 , 0 , 0 = 3 ( 2 τ + 5 ) γ 6 , 0 , 0 λ γ 5 , 1 , 0 μ γ 5 , 0 , 1 , Ξ 2 , 0 , 3 , 2 = τ γ 1 , 3 , 2 2 ( 2 λ + 3 ) γ 0 , 4 , 2 3 ( μ + 1 ) γ 0 , 3 , 3 , Ξ 2 , 0 , 0 , 5 = τ γ 1 , 0 , 5 λ γ 0 , 1 , 5 3 ( 2 μ + 5 ) γ 0 , 0 , 6 , Ξ 2 , 1 , 0 , 4 = ( 2 τ + 1 ) γ 2 , 0 , 4 λ γ 1 , 1 , 4 5 ( μ + 2 ) γ 1 , 0 , 5 , Ξ 2 , 0 , 5 , 0 = τ γ 1 , 5 , 0 3 ( 2 λ + 5 ) γ 0 , 6 , 0 μ γ 0 , 5 , 1 , Ξ 2 , 0 , 4 , 1 = τ γ 1 , 4 , 1 5 ( λ + 2 ) γ 0 , 5 , 1 ( 2 μ + 1 ) γ 0 , 4 , 2 ,
Ξ 3 , 3 , 1 , 0 = 5 ( τ + 2 ) γ 5 , 1 , 0 ( 3 λ + 1 ) γ 3 , 3 , 0 μ γ 3 , 1 , 2 , Ξ 3 , 2 , 2 , 0 = 2 ( 3 τ + 2 ) γ 4 , 2 , 0 2 ( 3 λ + 2 ) γ 2 , 4 , 0 μ γ 2 , 2 , 2 , Ξ 3 , 1 , 3 , 0 = ( 3 τ + 1 ) γ 3 , 3 , 0 5 ( λ + 2 ) γ 1 , 5 , 0 μ γ 1 , 3 , 2 , Ξ 3 , 1 , 2 , 1 = ( 3 τ + 1 ) γ 3 , 2 , 1 2 ( 3 λ + 2 ) γ 1 , 4 , 1 ( 3 μ + 1 ) γ 1 , 2 , 3 , Ξ 3 , 1 , 0 , 3 = ( 3 τ + 1 ) γ 3 , 0 , 3 λ γ 1 , 2 , 3 5 ( μ + 2 ) γ 1 , 0 , 5 , Ξ 3 , 1 , 1 , 2 = ( 3 τ + 1 ) γ 3 , 1 , 2 ( 3 λ + 1 ) γ 1 , 3 , 2 2 ( 3 μ + 2 ) γ 1 , 1 , 4 , Ξ 3 , 0 , 3 , 1 = τ γ 2 , 3 , 1 5 ( λ + 2 ) γ 0 , 5 , 1 ( 3 μ + 1 ) γ 0 , 3 , 3 , Ξ 3 , 2 , 1 , 1 = 2 ( 3 τ + 2 ) γ 4 , 1 , 1 ( 3 λ + 1 ) γ 2 , 3 , 1 ( 3 μ + 1 ) γ 2 , 1 , 3 , Ξ 3 , 0 , 1 , 3 = τ γ 2 , 1 , 3 ( 3 λ + 1 ) γ 0 , 3 , 3 5 ( μ + 2 ) γ 0 , 1 , 5 , Ξ 2 , 2 , 2 , 1 = 3 ( τ + 1 ) γ 3 , 2 , 1 3 ( λ + 1 ) γ 2 , 3 , 1 ( 2 μ + 1 ) γ 2 , 2 , 2 , Ξ 3 , 0 , 2 , 2 = τ γ 2 , 2 , 2 2 ( 3 λ + 2 ) γ 0 , 4 , 2 2 ( 3 μ + 2 ) γ 0 , 2 , 4 , Ξ 2 , 1 , 3 , 1 = ( 2 τ + 1 ) γ 2 , 3 , 1 2 ( 2 λ + 3 ) γ 1 , 4 , 1 ( 2 μ + 1 ) γ 1 , 3 , 2 , Ξ 2 , 4 , 1 , 0 = 5 ( τ + 2 ) γ 5 , 1 , 0 ( 2 λ + 1 ) γ 4 , 2 , 0 μ γ 4 , 1 , 1 , Ξ 2 , 4 , 0 , 1 = 5 ( τ + 2 ) γ 5 , 0 , 1 λ γ 4 , 1 , 1 ( 2 μ + 1 ) γ 4 , 0 , 2 , Ξ 2 , 3 , 2 , 0 = 2 ( 2 τ + 3 ) γ 4 , 2 , 0 3 ( λ + 1 ) γ 3 , 3 , 0 μ γ 3 , 2 , 1 , Ξ 2 , 3 , 1 , 1 = 2 ( 2 τ + 3 ) γ 4 , 1 , 1 ( 2 λ + 1 ) γ 3 , 2 , 1 ( 2 μ + 1 ) γ 3 , 1 , 2 , Ξ 2 , 3 , 0 , 2 = 2 ( 2 τ + 3 ) γ 4 , 0 , 2 λ γ 3 , 1 , 2 3 ( μ + 1 ) γ 3 , 0 , 3 , Ξ 2 , 2 , 3 , 0 = 3 ( τ + 1 ) γ 3 , 3 , 0 2 ( 2 λ + 3 ) γ 2 , 4 , 0 μ γ 2 , 3 , 1 , Ξ 2 , 2 , 0 , 3 = 3 ( τ + 1 ) γ 3 , 0 , 3 λ γ 2 , 1 , 3 2 ( 2 μ + 3 ) γ 2 , 0 , 4 , Ξ 2 , 2 , 1 , 2 = 3 ( τ + 1 ) γ 3 , 1 , 2 ( 2 λ + 1 ) γ 2 , 2 , 2 3 ( μ + 1 ) γ 2 , 1 , 3 , Ξ 2 , 1 , 2 , 2 = ( 2 τ + 1 ) γ 2 , 2 , 2 3 ( λ + 1 ) γ 1 , 3 , 2 3 ( μ + 1 ) γ 1 , 2 , 3 , Ξ 2 , 1 , 1 , 3 = ( 2 τ + 1 ) γ 2 , 1 , 3 ( 2 λ + 1 ) γ 1 , 2 , 3 2 ( 2 μ + 3 ) γ 1 , 1 , 4 .
So, in the same way as the previous cases, we prove that H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one for ( τ , λ , μ ) { ( 1 3 , 1 3 , 2 3 ) , ( 0 , 2 , 1 3 ) , ( 0 , 3 2 , 1 ) , ( 0 , 1 3 , 2 ) , ( 1 , 1 , 1 2 ) , . . ( 0 , 2 3 , 2 3 ) , ( 1 2 , 3 2 , 1 2 ) , ( 2 , 1 3 , 0 ) , ( 2 3 , 2 3 , 0 ) , ( 0 , 2 , 0 ) , ( 2 3 , 0 , 2 3 ) , ( 1 3 , 2 , 0 ) , . . ( 1 3 , 2 3 , 1 3 ) , ( 1 3 , 0 , 2 ) , ( 2 , 1 2 , 0 ) , ( 2 , 0 , 1 2 ) , ( 3 2 , 1 , 0 ) , ( 3 2 , 1 2 , 1 2 ) , ( 3 2 , 0 , 1 ) , . . ( 1 , 3 2 , 0 ) , ( 0 , 0 , 2 ) , ( 1 , 1 2 , 1 ) , ( 1 , 0 , 3 2 ) , ( 1 2 , 2 , 0 ) , ( 5 2 , 0 , 0 ) , ( 1 2 , 1 , 1 ) , ( 0 , 0 , 5 2 ) , . . ( 1 2 , 0 , 2 ) , ( 0 , 5 2 , 0 ) , ( 0 , 2 , 1 2 ) , ( 2 3 , 1 3 , 1 3 ) , ( 1 2 , 1 2 , 3 2 ) , } . While τ , λ and μ are not like the above, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is trivial.
The case when τ + μ + λ = ν 7
In the same way as the previous cases, we prove that H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is of dimension one for ( τ , λ , μ ) ( { ( 1 3 , 4 3 , 0 ) , ( 1 3 , 0 , 4 3 ) , ( 0 , 5 3 , 0 ) , ( 0 , 0 , 5 3 ) , ( 0 , 1 , 2 3 ) , ( 0 , 2 3 , 1 ) , ( 0 , 1 3 , 4 3 ) , ) . . ( 3 , 0 , 0 ) , ( 1 2 , 0 , 5 2 ) , ( 0 , 3 , 0 ) , ( 5 2 , 1 2 , 0 ) , ( 5 2 , 0 , 1 2 ) , ( 1 2 , 5 2 , 0 ) , ( 1 2 , 0 , 5 2 ) , ( 2 , 1 , 0 ) , . . ( 2 , 0 , 1 ) , ( 1 , 2 , 0 ) , ( 1 , 0 , 2 ) , ( 0 , 2 , 1 ) , ( 1 2 , 1 2 , 2 ) , ( 1 2 , 2 , 1 2 ) , ( 2 , 1 2 , 1 2 ) , . . ( 3 2 , 0 , 3 2 ) , ( 3 2 , 3 2 , 0 ) , ( 0 , 3 2 , 3 2 ) , ( 1 , 1 , 1 ) , ( 1 , 3 2 , 1 2 ) , ( 1 2 , 3 2 , 1 ) , ( 1 2 , 1 , 3 2 ) , . . ( 0 , 1 , 2 ) , ( 3 2 , 1 , 1 2 ) , ( 1 , 1 2 , 3 2 ) , ( 0 , 0 , 3 ) , ( 3 2 , 1 2 , 1 ) } and zero-dimensional otherwise.
The case when ν τ λ μ 8
For ν τ λ μ 8 , the number of equations coming out from the condition 1-cocycle is much larger than the number of variables generating a 1-cocycle—for example, for ν τ λ μ 8 , the number of (variables) = 120 , while the number of (equations) = 125 . For generic τ , λ and μ , the number of equations will generate a 1-dimensional space, which gives a unique cohomology class. This H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) is indeed trivial because the expression L X K k τ , λ , μ is also a 1-cocycle.
Remark 1.
For ν τ λ μ 8 and for particular values of τ, λ and μ, H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) may not be trivial. For instance, for ν τ μ λ = 8 , we have
H diff 1 ( V ( RP 1 ) , aff ( 1 ) ; D 0 , 0 , 7 2 ; 9 2 ) R .

6. Conclusions

In the present work, we focused on the cohomology of LA . First, we determined H 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) , in which we proved that H 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) is zero-dimensional if k = ν τ λ μ N and 1 2 ( k + 1 ) ( k + 2 ) -dimensional if k N . Moreover, H diff 1 ( aff ( 1 ) ; D τ , λ , μ ; ν ) is spanned by the 1-cocycles: ω j ( X h , G ) = h G ( j ) with | j | = k N . On the second hand, we classified fourth-linear Hom aff ( 1 ) , and we proved that the space of Hom aff ( 1 ) is 1 6 k ( k 1 ) ( k + 1 ) -dimensional, where k = ν τ λ μ + 1 . Finally, we calculated H 1 ( V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν ) , in which we proved that H diff 1 V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν is one-dimensional for resonant values of weights that satisfy ν τ λ μ < 8 . If ν τ λ μ 8 for generic τ , λ and μ , we proved that each 1-cocycle is eliminated by adding a coboundary, and then H diff 1 V ( RP 1 ) , aff ( 1 ) ; D τ , λ , μ ; ν is zero-dimensional.

Author Contributions

A.A.A.: formal analysis and writing (original draft), M.A.: studies conceptualization and writing (review and editing) the manuscript, A.G.: check the whole proofs of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (43-PRFA-P-57).

Institutional Review Board Statement

All authors approve ethics and consent to participate.

Informed Consent Statement

Please add.

Data Availability Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (43-PRFA-P-57).

Conflicts of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

References

  1. Fuks, D.B. Cohomology of Infinite-Dimensional Lie Algebras; Contemp. Soviet. Math.; Consultants Bureau: New York, NY, USA, 1986. [Google Scholar]
  2. Feigin, B.L.; Fuks, D.B. Homology of Lie algebras on vector fields on the line. Funkts. Anal. Prilozhen 1982, 16, 47–63. [Google Scholar] [CrossRef]
  3. Bouarroudj, S.; Ovsienko, V. Three cocycle on Diff(S1) generalizing the Schwarzian derivative. Int. Math. Res. Notices 1998, 1998, 25–39. [Google Scholar] [CrossRef]
  4. Cohen, P.; Manin, Y.; Zagier, D. Automorphic pseudodifferential operators. In Algebraic Aspects of Integrable Systems; Progr. Nonlinear Differential Equations Appl. 26; Birkhauser Boston: Boston, MA, USA, 1997. [Google Scholar]
  5. Lecomte, P.B.A.; Ovsienko, V. Projectively invariant symbol calculus. Lett. Math. Phys. 1999, 49, 173–196. [Google Scholar] [CrossRef]
  6. Gargoubi, H. Sur la géométrie de l’espace des opérateurs différentiels linéaires sur R ". Bull. Soc. Roy. Sci. Liège 2000, 69, 21–47. [Google Scholar]
  7. Gordan, P. Invariantentheorie; Teubner: Leipzig, Germany, 1887. [Google Scholar]
  8. Bouarroudj, S. Projective and conformal Schwarzian derivatives and cohomology of Lie algebras vector fields related to differential operators. Int. Jour. Geom. Methods. Mod. Phys. 2006, 3, 667–696. [Google Scholar] [CrossRef] [Green Version]
  9. Bouarroudj, S.; Gargoubi, H. Projectively invariant cocycles for holomorphic vector fields on an open Riemann surface. Tokyo J. Maths 2002, 25, 33–40. [Google Scholar] [CrossRef]
  10. Lecomte, P.B.A.; Ovsienko, V. Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold. Compos. Math. 2000, 124, 95–110. [Google Scholar] [CrossRef] [Green Version]
  11. Wilczynski, E.J. Projective Differential Geometry of curves and Ruled Surfaces; Teubner: Leipzig, Germany, 1906. [Google Scholar]
  12. Basdouri, I.; Ben Ammar, M.; Ben Fraj, N.; Boujelbene, M.; Kammoun, K. Cohomology of the Lie superalgebra of contact vector fields on K 1|1 and deformations of the superspace of symbols. J. Nonlinear Math. Phys. 2009, 16, 373. [Google Scholar] [CrossRef] [Green Version]
  13. Ben Fraj, N.; Laraiedh, I. The affine cohomology spaces and its applications. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1650016. [Google Scholar] [CrossRef]
  14. Lecomte, P.B.A. On the cohomology of sl (n + 1); R ) acting on differential operators and sl (n + 1); R )-equivariant symbols Indag. Math. Phys. 2000, 11, 95–114. [Google Scholar] [CrossRef] [Green Version]
  15. Nijenhuis, A.; Richardson, R. Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 1966, 72, 1–29. [Google Scholar] [CrossRef] [Green Version]
  16. Omri, S. On aff (1)-relative cohomology of the Lie algebra of vector fields on weighted densities on R. Math. Rep. 2016, 18, 509–514. [Google Scholar]
  17. Ben, F.N.; Abdaoui, M.; Raouafi, H. On osp (1|2)-relative cohomology of the Lie superalgebra of contact vector fields on R 1|1. Int. J. Geom. Methods Mod. Phys. 2016, 14, 1750022. [Google Scholar]
  18. Bouarroudj, S. On sl (2)-relative Cohomology of the Lie algebra of vector fields and differentiel operators. J. Nonlinear Math. Phys. 2007, 14, 1–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Almoneef, A.A.; Abdaoui, M.; Ghallabi, A. The Fourth-Linear aff(1)-Invariant Differential Operators and the First Cohomology of the Lie Algebra of Vector Fields on RP1. Mathematics 2023, 11, 1226. https://doi.org/10.3390/math11051226

AMA Style

Almoneef AA, Abdaoui M, Ghallabi A. The Fourth-Linear aff(1)-Invariant Differential Operators and the First Cohomology of the Lie Algebra of Vector Fields on RP1. Mathematics. 2023; 11(5):1226. https://doi.org/10.3390/math11051226

Chicago/Turabian Style

Almoneef, Areej A., Meher Abdaoui, and Abderraouf Ghallabi. 2023. "The Fourth-Linear aff(1)-Invariant Differential Operators and the First Cohomology of the Lie Algebra of Vector Fields on RP1" Mathematics 11, no. 5: 1226. https://doi.org/10.3390/math11051226

APA Style

Almoneef, A. A., Abdaoui, M., & Ghallabi, A. (2023). The Fourth-Linear aff(1)-Invariant Differential Operators and the First Cohomology of the Lie Algebra of Vector Fields on RP1. Mathematics, 11(5), 1226. https://doi.org/10.3390/math11051226

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop