Probabilistic Classification Method of Spiking Neural Network Based on Multi-Labeling of Neurons
Abstract
:1. Introduction
2. Related Work and Motivation
3. Proposed Approach
3.1. Probabilistic Classification
3.2. Classification Using Quantization
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Geiger, J.; Pohjalainen, J.; Mousa, A.E.D.; Jin, W.; Schuller, B. Deep learning for environmentally robust speech recognition: An overview of recent developments. ACM Trans. Intell. Syst. Technol. (TIST) 2018, 9, 1–28. [Google Scholar] [CrossRef]
- Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wu, Y.; Wong, H.S.P. Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 2011, 98, 103514. [Google Scholar] [CrossRef]
- Zhao, L.; Hong, Q.; Wang, X. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor. Neurocomputing 2018, 314, 207–214. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Q.; Zhang, N.; Li, Y. Indirect multi-energy transactions of energy internet with deep reinforcement learning approach. IEEE Trans. Power Syst. 2022, 37, 4067–4077. [Google Scholar] [CrossRef]
- John, R.A.; Ko, J.; Kulkarni, M.R.; Tiwari, N.; Chien, N.A.; Ing, N.G.; Leong, W.L.; Mathews, N. Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 2017, 13, 1701193. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Zi, M.; Ren, C.; Xiao, Q.; Tang, M.; Wei, L.; An, F.; Xie, S.; Wang, J.; Zhong, X.; et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Appl. Phys. Lett. 2020, 117, 92903. [Google Scholar] [CrossRef]
- Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 2015, 9, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheradpisheh, S.R.; Ganjtabesh, M.; Thorpe, S.J.; Masquelier, T. STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018, 99, 56–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferré, P.; Mamalet, F.; Thorpe, S.J. Unsupervised feature learning with winner-takes-all based stdp. Front. Comput. Neurosci. 2018, 12, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.S.P. Stochastic learning in oxide binary synaptic device for neuromorphic computing. Front. Neurosci. 2013, 7, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunaraj, K.; Seshasayanan, R. Leading one detectors and leading one position detectors-an evolutionary design methodology. Can. J. Electr. Comput. Eng. 2013, 36, 103–110. [Google Scholar] [CrossRef]
Params | |
---|---|
Iteration | 20,000 |
Hidden neuron | 400 |
Membrane potential decay rate | 0.1 |
Leakage | 0.0025 |
Spike threshold | 0.005 |
Ltd learning rate | 0.001 |
Ltp learning rate | 0.16 |
Initial membrane potential | 0 |
Method | Accuracy | Standard Deviation | p-Value |
---|---|---|---|
Baseline | 81.92% | 0.15 | 0.01 |
Probabilistic inferring | 85.13% | 0.18 | 0.01 |
Bit(2) inferring | 84.40% | 0.33 | 0.01 |
Bit(3) inferring | 84.50% | 0.21 | 0.01 |
Design | Area (m) | Delay () | Power () | Energy (%) | Energy/Acc () |
---|---|---|---|---|---|
Baseline | 3948.48 | 4.47 | 165.2 | 738.444 | 9.0138 |
Bit(2) inferring | 3438.08 | 1.88 | 162.8 | 306.064 | 3.6262 |
Bit(3) inferring | 3787.20 | 2.52 | 163.2 | 411.264 | 4.8669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, M.; Kim, J.; Kang, J.-M. Probabilistic Classification Method of Spiking Neural Network Based on Multi-Labeling of Neurons. Mathematics 2023, 11, 1224. https://doi.org/10.3390/math11051224
Sung M, Kim J, Kang J-M. Probabilistic Classification Method of Spiking Neural Network Based on Multi-Labeling of Neurons. Mathematics. 2023; 11(5):1224. https://doi.org/10.3390/math11051224
Chicago/Turabian StyleSung, Mingyu, Jaesoo Kim, and Jae-Mo Kang. 2023. "Probabilistic Classification Method of Spiking Neural Network Based on Multi-Labeling of Neurons" Mathematics 11, no. 5: 1224. https://doi.org/10.3390/math11051224
APA StyleSung, M., Kim, J., & Kang, J. -M. (2023). Probabilistic Classification Method of Spiking Neural Network Based on Multi-Labeling of Neurons. Mathematics, 11(5), 1224. https://doi.org/10.3390/math11051224