1. Introduction
As is known, the quadratic-phase Fourier transform [
1,
2,
3,
4,
5,
6] is considered a useful tool in signal processing and has drawn great attention from some scholars in recent years. It can also be looked at as a natural generalization of several popular transformations, such as the Fourier transformation [
7,
8], the linear canonical transform (LCT) and the fractional Fourier transform (FrFT). On the other hand, some researchers have interest in the construction of various transformations using the quadratic-phase Fourier transform (see, e.g., [
9,
10,
11]). They have also investigated the main properties of constructed transformations such as spatial shifts, multiplication, convolution and inequalities. Recently, in [
12], the authors studied the Gabor quaternion quadratic-phase Fourier transform. It was shown that several properties of the proposed transformation are obtained using a direct connection between the definition of the Gabor quaternion quadratic-phase Fourier transform and the definition of the quaternion quadratic-phase Fourier transform. Therefore, it is very meaningful to study the quaternion quadratic-phase Fourier transform and investigate its properties in detail.
In the current research, we introduce a definition of the quaternion quadratic-phase Fourier transform, which can be thought as a non-trivial generalization of the quaternion Fourier transform, the quaternion linear canonical transform (QLCT) [
13,
14,
15,
16,
17], the quaternion fractional Fourier transform (QFrFT) and the other generalized transformations. It is shown that the direct interaction between the quaternion quadratic-phase Fourier transform and the quaternion Fourier transform permits us to build some properties and novel inequalities associated with the quaternion quadratic-phase Fourier transform. We emphasize that our present work is different from the proposed method in [
18], as in [
18], the linear canonical wavelet transform was proposed, while in the present study, a new quaternion quadratic-phase Fourier transform is proposed.
This paper is arranged as follows. In
Section 2, we introduce some preliminaries related to quaternion algebra which will be useful. The definition of the quaternion Fourier transform (QFT) and its uncertainty principle are included in
Section 3.
Section 4 is devoted to introducing the quaternion quadratic-phase Fourier transform (QQPFT) and its connection to the quaternion Fourier transform.
Section 5 is devoted to the derivation of several uncertainty principles associated with the QQPFT. Lastly,
Section 6 gives our conclusions.
2. Preliminary Notations
In this part, we mainly recall some basic facts on quaternion algebra and properties, which will be needed throughout this work. The quaternion algebra
over a real number
is an extension of the complex numbers in higher dimensions. An element
is of the form [
19]
for which the three imaginary quaternion units
and
obey the following defining relations:
For simplicity, any
may be written as
In this case, and denote the scalar and vector parts, respectively.
Due to Equation (
2), the multiplication of quaternions
q and
r is expressed as
where
and
.
The conjugate of a quaternion
r denoted by
is given by
with the properties
For every
, the following are satisfied:
The module (norm) of the quaternion
q can be defined as
One can easily verify that for every
, the following holds:
It is straightforward to see that
and
The inverse of a non-zero quaternion
is expressed as
This will lead to the following:
Lemma 1. Let q be a nonzero quaternion. For every , one has Proof. Since
, under Equations (
9) and (
11), we have
which gives the required result. □
Furthermore, one may consider the inner product for two quaternion functions
f and
g as follows:
with the scalar product
3. Quaternion Fourier Transform
This part begins by defining the quaternion Fourier transform (QFT). Since the quaternion product is not always commutative in general, there are three different kinds of QFTs: the so-called two-sided QFT, right-sided QFT and left-sided QFT. We focus on the introduction of the two-sided quaternion Fourier transform (or the QFT for short). We collect its important properties, including the inversion formula and uncertainty principles, which will be needed later. More details of the QFT properties, including its uncertainty principle, are referred to in [
20,
21,
22,
23,
24,
25]:
Definition 1. Let . The definition of the two-sided quaternion Fourier transform of f is described throughwhere . The reconstruction formula of the QFT defined above is computed by using the following definition:
Definition 2. Let and . The inverse quaternion Fourier transform for f over is evaluated as follows: We can easily verify the following result:
Lemma 2. If , then exists and is given bywhere . Proof. Due to the relation in Equation (
16), we have
The proof is complete. □
Useful results for the QFT defined by Equation (
16) include the inequalities demonstrated by the following formulas:
Theorem 1. (Heisenberg’s inequality for QFT [
26]).
For all with , the following inequality holds: Theorem 2. (QFT Sharp Hausdorff–Young Inequality [
20]).
Let and s be such that . Then, for any , the following inequality holds:where Theorem 3. (QFT Pitt’s inequality [
24]).
Let and . Then, we havewhereHere, is the quaternion Schwartz space and is the well-known gamma function.
4. Quaternion Quadratic-Phase Fourier Transform (QQPFT)
The main purpose of this section is to derive the useful properties of the quaternion quadratic-phase Fourier transform (QQPFT). We also study its fundamental relationship to the quaternion Fourier transform and adopt it to provide the proof of the uncertainty principles related to the quaternion quadratic-phase Fourier transform.
4.1. QQPFT Definitions
Let us start by introducing the three types of definitions for the quaternion quadratic-phase Fourier transform:
Definition 3. Let and be the given parameter sets. The two-sided quaternion quadratic-phase Fourier transform of a signal such that and is defined through Definition 4. Let and be the given parameter sets. The right-sided quaternion quadratic-phase Fourier transform of a signal such that and is defined through Definition 5. Let and be the given parameter sets. The left-sided quaternion quadratic-phase Fourier transform of a signal such that and is defined through Our main work is solely focused on the two-sided quaternion quadratic-phase Fourier transform (QQPFT).
Some notable special cases include the following:
When
and
, the above definition boils down to the QFT definition in Equation (
16).
For the parameter sets
and
, multiplying the left side of Equation (
24) by
and the right side of Equation (
24) by
reduces to the quaternion fractional Fourier transform.
Some essential properties of the QQPFT are shown in the following theorem:
Theorem 4. If the quaternion function f belongs to , then is continuous on .
Proof. Applying the QQPFT definition (Equation (
24)) shows that for every
, we have
Applying the triangle inequality for the quaternion described in Equation (
10) results in
From Equation (
29), we find that
Using the relations in Equations (
30) and (
31) with the Lebesgue-dominated convergence theorem, we deduce that
is continuous on
. □
A generalization of the Riemann–Lebesgue lemma in the setting of the QQPFT is demonstrated by the following result:
Theorem 5. Let the quaternion function belong to . Then, we haveuniformly in , anduniformly in . Proof. We derive only the first part, and the proof of the remaining part is quite similar. It is straightforward to verify that
Applying Equaiton (
34) results in
The relation in Equation (
35) can be rewritten in the form
This yields
uniformly in
. This ends the proof of the theorem. □
4.2. Relation between the QQPFT and QFT
In order to obtain the other properties of the quaternion quadratic-phase Fourier transform, we need to introduce the direct interaction between the quaternion quadratic-phase Fourier transform and the quaternion Fourier transform as expressed below:
where
and
From the relation in Equation (
36), we immediately obtain
Now, we formulate the inversion theorem associated with the QQPFT as shown in the next result:
Theorem 6. If and , then the reconstruction formula of the QQPFT is given by Proof. In light of the reconstruction formula for the QFT defined by Equation (
17), we find that
From Equation (
37), we further obtain
The proof is complete. □
In the following theorem, we formulate the scalar part of Parseval’s formula for the QQPFT, which will be useful for deriving the uncertainty principles concerning the proposed transformation:
Theorem 7. (QQPFT Parseval’s formula).
. Then, it holds that Proof. According to Parseval’s formula for the QFT defined by Equation (
16), for the functions
and
, we have
Using the relation in Equation (
39), we infer that
The proof is complete. □
Remark 1. It should be observed that for the right-sided quaternion quadratic-phase Fourier transform, the full version of Parseval’s formula is valid: 5. Inequalities for QQPFT
It is known that Heisenberg’s uncertainty principle in quantum physics tells us that the position and velocity (or momentum) of a particle cannot be determined at exactly the same time. In harmonic analysis especially, the uncertainty principle explains a relation of the function to its Fourier transform. More precisely, it stated that a nonzero function and its Fourier transformation cannot simultaneously concentrate around points. Inspired by these facts, we extend several versions of the uncertainty principles in the context of the quaternion quadratic-phase Fouurier transform (QQPFT). First, we obtain a sharp Hausdorff–Young inequality for the QQPFT as shown in the following theorem:
Theorem 8. (QQPFT Sharp Hausdorff-Young).
Under the same conditions as in Theorem 2, we havewhere is defined by Equation (21). Proof. It directly follows from the relation in Equation (
40) that
Applying the relations in Equations (
20) and (
38) results in
The proof is complete. □
We further formulate Pitt’s inequality for the QQPFT, which is an extension of Pitt’s inequality for the QFT in Theorem 3. It seems that this result is an improved version of Pitt’s inequality for the QFT:
Theorem 9. (QQPFT Pitt’s inequality).
Under the same assumptions as in Theorem 3, the following holds: Proof. Including Equation (
37) into both sides of Equaiton (
22) yields
By setting
, we obtain
By substituting Equations (
37) and (
39) into both sides of the above identity, the following result is obtained:
The proof is complete. □
Now, we are in a position to derive the Heisenberg-type uncertainty principle for the QQPFT, which is an extension of Theorem 1 mentioned earlier:
Theorem 10. Under the same assumptions as in Theorem 1, one can obtain Proof. Replacing
with
, described in Equation (
37), into both sides of Equation (
19) gives
By inserting Equations (
37) and (
39) into the above identity, we find that
Simplifying this gives the required result. □
In the following paragraph, we state and prove the logarithmic uncertainty principle related to the QQPFT:
Theorem 11. Let . Then, one obtains Proof. According to the logarithmic uncertainty principle concerning the QFT [
27,
28], we obtain
Upon putting
in place of
, we find
Through Equation (
39), we infer that
By simplifying and using Equation (
38), we see that
Through Equation (
45), we obtain
which gives the desired result. □
Observe that for
, we may extend the
-norm to the
-norm in Equation (
57) and obtain the following result:
Theorem 12. Under the conditions in Theorem 1, the following holds: In particular, we havefor which . Proof. Replacing
with
, described in Equation (
37), into both sides of Equation (
68) yields
Through the application of Equations (
38)–(
40) into the above identity, we obtain
Under Equation (
45), we obtain
This ends the proof of the theorem. □
Remark 2. It should be observed that for , Theorem 12 changes to Theorem 10.
6. Conclusions
In this paper, we introduced the quaternion quadratic-phase Fourier transform and investigated properties such as the continuous and Riemann–Lebesgue properties. We derived several inequalities related to this transformation. The proof of this uncertainty utilizes the basic relationship between the quaternion quadratic-phase Fourier transform and quaternion Fourier transform. Some possible future extensions include the application of the proposed method in image processing, which is well documented in [
29,
30], as well as in computer graphics, scientific visualization and numerical analysis, which have been explored in [
31,
32,
33,
34].
Author Contributions
Conceptualization, M.B.; formal analysis, S.A.A.K.; funding acquisition, S.A.A.K.; investigation, M.B. and S.A.A.K.; methodology, M.B. and S.A.A.K.; resources, S.A.A.K.; validation, M.B. and S.A.A.K.; writing—original draft, M.B.; writing—review and editing, M.B. and S.A.A.K. All authors have read and agreed to the published version of the manuscript.
Funding
This work was funded by the Research Managements Centre of Universiti Malaysia Sabah through the UMS/PPI-DPJI Journal of Article Fund.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Acknowledgments
The second author was fully supported by Universiti Malaysia Sabah in Malaysia. The authors give special thanks to the Faculty of Computing and Informatics at Universiti Malaysia Sabah for the computing facilities support. The authors are thankful to the anonymous reviewers for careful reading of manuscript, comments and suggestions for the improvement of this paper.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Castro, L.P.; Haque, M.R.; Murshed, M.M.; Saitoh, S.; Tuan, N.M. Quadratic Fourier transform. Ann. Funct. Anal. 2014, 5, 10–23. [Google Scholar] [CrossRef]
- Castro, L.P.; Minh, L.T.; Tuan, N.M. New convolution for quadratic-phase Fourier integral operators and their application. Mediterr. J. Math. 2018, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Lone, W.Z.; Shah, F.A.; Zayed, A.I. Discrete quadratic-phase Fourier transform: Theory and convolution structures. Entropy 2022, 24, 1340. [Google Scholar] [CrossRef]
- Kumar, M.; Pradhan, T. Quadratic-phase Fourier transform of tempered distributions and pseudo-differential operators. Integral Transform. Spec. Funct. 2022, 33, 449–465. [Google Scholar] [CrossRef]
- Shah, F.A.; Lone, W.; Nisar, K.S.; Khalifa, A.S. Analytical solutions of generalized differential equations using quadratic-phase Fourier transform. AIMS Math. 2022, 7, 1925–1940. [Google Scholar] [CrossRef]
- Shah, F.A.; Lone, W.Z. Quadratic-phase wavelet transform with applications to generalized differential equations. Math. Methods Appl. Sci. 2022, 45, 1153–1175. [Google Scholar] [CrossRef]
- Bracewell, R. The Fourier Transform and Its Applications; McGraw Hill: Boston, MA, USA, 2000. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Bhat, M.Y.; Dar, A.H.; Urynbassarova, D.; Urynbassarova, A. Quadratic-phase wave packet transform. Optik 2022, 261, 169120. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, P.B. The quadratic-phase Fourier wavelet transform. Math. Methods Appl. Sci. 2020, 43, 1953–1969. [Google Scholar] [CrossRef]
- Shah, F.A.; Nisar, K.S.; Lone, W.Z.; Tantary, A.Y. Short-time quadratic-phase Fourier transform. Optik 2021, 245, 167689. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. The 2-D hyper-complex Gabor quadratic-phase Fourier transform. J. Anal. 2023, 31, 243–260. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, B.Z. Novel uncertainty principles for two-sided quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 2018, 28, 15. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, S. Uncertainty principles for the two-sided quaternion linear canonical transform. Circuits Syst. Signal Process. 2020, 39, 4436–4458. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, S. On uncertainty principle for the two-sided quaternion linear canonical transform. J. Pseudo-Differ. Oper. Appl. 2021, 12, 3. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, B.Z. Generalized uncertainty principles for the two-sided quaternion linear canonical transform. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, 15–20 April 2018. [Google Scholar]
- Urynbassarova, D.; Teali, A.A.; Zhang, F. Discrete quaternion linear canonical transform. Digit. Signal Process. 2022, 122, 103361. [Google Scholar] [CrossRef]
- Bahri, M.; Karim, S.A.A. Novel uncertainty principles concerning linear canonical wavelet transform. Mathematics 2022, 10, 3502. [Google Scholar] [CrossRef]
- Bülow, T. Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. Ph.D. Thesis, University of Kiel, Kiel, Germany, 1999. [Google Scholar]
- Lian, P. Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 2020, 148, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Abouelaz, A.; Achak, A.; Daher, R.; Safouane, N. Donoho-Stark’s Uncertainty Principle for the Quaternion Fourier Transform. Bol. Soc. Mat. Mex. 2020, 26, 587–597. [Google Scholar] [CrossRef]
- Achak, A.; Abouelaz, A.; Daher, R.; Safouane, N. Uncertainty principles for the quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 2019, 29, 99. [Google Scholar] [CrossRef]
- Bahri, M.; Lawi, A.; Aris, N.; Saleh, M.; Nur, M. Relationships between convolution and correlation for Fourier transform and quaternion Fourier transform. Int. J. Math. Anal. 2013, 7, 2101–2109. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.P.; Kou, K.I.; Liu, M.S. Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 2015, 423, 681–700. [Google Scholar] [CrossRef]
- Hitzer, E. Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algebr. 2007, 20, 497–517. [Google Scholar] [CrossRef] [Green Version]
- Bahri, M.; Hitzer, E.; Hayashi, A.; Ashino, R. An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 2008, 56, 2398–2410. [Google Scholar] [CrossRef]
- Bahri, M.; Ashino, R. Logarithmic uncertainty principle for quaternion linear canonical transform. In Proceedings of the 2016 International Conference on Wavelet Analysis and Pattern Recognition, Jeju, Republic of Korea, 10–13 July 2016. [Google Scholar]
- Shah, F.A.; Teali, A.A. Two-sided quaternion wave-packet transform and the quantitative uncertainty principles. Filomat 2022, 36, 449–467. [Google Scholar] [CrossRef]
- Zulkifli, N.A.B.; Karim, S.A.A.; Shafie, A.B.; Sarfraz, M.; Ghaffar, A.; Nisar, K.S. Image interpolation using a rational bi-cubic ball. Mathematics 2015, 7, 1045. [Google Scholar] [CrossRef] [Green Version]
- Karim, S.A.A. Rational bi-quartic spline with six parameters for surface interpolation with application in image enlargement. IEEE Access 2020, 8, 115621–115633. [Google Scholar] [CrossRef]
- Karim, S.A.A.; Saaban, A.; Nguyen, V.T. Scattered data interpolation using quartic triangular patch for shape-preserving interpolation and comparison with mesh-free methods. Symmetry 2020, 12, 1071. [Google Scholar] [CrossRef]
- Ali, F.A.M.; Karim, S.A.A.; Saaban, A.; Hasan, M.K.; Ghaffar, A.; Nisar, K.S.; Baleanu, D. Construction of cubic timmer triangular patches and its application in scattered data interpolation. Mathematics 2020, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Karim, S.A.A.; Saaban, A.; Skala, V.; Ghaffar, A.; Nisar, K.S.; Baleanu, D. Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation. Adv. Differ. Equ. 2020, 2020, 151. [Google Scholar] [CrossRef] [Green Version]
- Abdul Karim, S.A.; Khan, F.; Basit, M. Symmetric Bernstein Polynomial Approach for the System of Volterra Integral Equations on Arbitrary Interval and Its Convergence Analysis. Symmetry 2022, 14, 1343. [Google Scholar] [CrossRef]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).