Identifying Influential Spreaders Using Local Information
Abstract
:1. Introduction
2. Preliminaries
2.1. Well-Known State-of-the-Art Methods
2.2. SIR Model
2.3. The Kendall’s Tau
2.4. The Monotonicity
3. Methods
4. Experiments
4.1. Data Description
4.2. Experimental Results
5. Discussion
- The number of iterations (i.e., T) is determined by the size of node neighborhood to be considered;
- The formula of node information (i.e., ) can be set according to the needs of the problem, which can contain multi-characteristics of nodes;
- The restriction function (i.e., ) can be set according to certain characteristics of the specific network, the growth rate of the results after iteration, or other specific needs.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, M.E.J. Networks, 2nd ed.; Oxford University Press: Oxford, UK, 2018; pp. 1–11. [Google Scholar]
- Wang, X.F.; Li, X.; Chen, G.R. Network Science: An Introduction; Higher Education Press: Beijing, China, 2012; pp. 3–27. [Google Scholar]
- Lü, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T. Vital nodes identification in complex networks. Phys. Rep. 2016, 650, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.L. Scale-free networks: A decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925–979. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Tang, M.; Stanley, H.E.; Braunstein, L.A. Unification of theoretical approaches for epidemic spreading on complex networks. Rep. Prog. Phys. 2017, 80, 036603. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.A.M.; Abid, F.; Wahiddin, M.R.; Bhatti, Z. Robustness of dengue complex network under targeted versus random attack. Complexity 2017, 2017, 2515928. [Google Scholar] [CrossRef] [Green Version]
- Borge-Holthoefer, J.; Moreno, Y. Absence of influential spreaders in rumor dynamics. Phys. Rev. E 2012, 85, 026116. [Google Scholar] [CrossRef] [Green Version]
- Cui, A.X.; Wang, W.; Tang, M.; Fu, Y.; Liang, X.; Do, Y. Efficient allocation of heterogeneous response times in information spreading process. Chaos 2014, 24, 033113. [Google Scholar] [CrossRef]
- Csermely, P.; Korcsmáros, T.; Kiss, H.J.M.; London, G.; Nussinov, R. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol. Ther. 2013, 138, 333–408. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Quan, Y.; Miao, Q.; Chi, J. Identifying influential genes in protein-protein interaction networks. Inf. Sci. 2018, 454, 229–241. [Google Scholar] [CrossRef]
- Puliga, M.; Caldarelli, G.; Battiston, S. Credit default swaps networks and systemic risk. Sci. Rep. 2014, 4, 6822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardoscia, M.; Barucca, P.; Battiston, S.; Caccioli, F.; Cimini, G.; Garlaschelli, D.; Saracco, F.; Squartini, T.; Caldarelli, G. The physics of financial networks. Nat. Rev. Phys. 2021, 3, 490–507. [Google Scholar] [CrossRef]
- Malik, H.A.M. Complex network formation and analysis of online social media systems. Cmes-Comp. Model. Eng. 2022, 130, 1737–1750. [Google Scholar]
- Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J. PageRank for ranking authors in co-citation networks. J. Am. Soc. Inform. Sci. Technol. 2009, 60, 2229–2243. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Pan, Y.; Zhen, Y.; Ma, Z.; Yuan, J.; Guo, H.; Yu, Z.; Ma, C.; Wu, Y. PrestigeRank: A new evaluation method for papers and journals. J. Inform. 2011, 5, 1–13. [Google Scholar] [CrossRef]
- Albert, R.; Albert, I.; Nakarado, G.L. Structural vulnerability of the North American power grid. Phys. Rev. E 2004, 69, 025103. [Google Scholar] [CrossRef] [Green Version]
- Motter, A.E. Cascade control and defense in complex networks. Phys. Rev. Lett. 2004, 93, 098701. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, M.; Cassi, D.; Vincenzi, S. Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs. Ecol. Model 2013, 251, 1–8. [Google Scholar] [CrossRef]
- Bellingeri, M.; Bodini, A. Food web’s backbones and energy delivery in ecosystems. Adv. Ecol. 2016, 125, 586–594. [Google Scholar] [CrossRef]
- Monica, O.; Wahida, F.W.; Fakhruroja, H. The Relations between Influencers in Social Media and the Election Winning Party 2019. In Proceedings of the 2019 International Conference on ICT for Smart Society, Bandung, Indonesia, 19–20 November 2019; pp. 1–5. [Google Scholar]
- Lü, L.; Zhou, T.; Zhang, Q.M.; Stanley, H.E. The H-index of a network node and its relation to degree and coreness. Nat. Commun. 2016, 7, 10168. [Google Scholar] [CrossRef] [Green Version]
- Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E. Identification of influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Bonacich, P. Factoring and weighting approaches to status scores and clique identification. Math. Sociol. 1972, 2, 113–120. [Google Scholar] [CrossRef]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Lü, L.; Shang, M.S.; Zhang, Y.C.; Zhou, T. Identifying influential nodes in complex networks. Phys. A 2012, 391, 1777–1787. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Sun, H.L.; Tang, Q.; Tian, S.Z.; Xie, M. Identifying influential spreaders in complex networks by propagation probability dynamics. Chaos 2019, 29, 033120. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ren, T.; Ma, X.Q.; Liu, S.M.; Zhang, Y.X.; Zhou, T. Identifying influential spreaders by gravity model. Sci. Rep. 2019, 9, 8387. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Cao, Z.; Qi, X. Quasi-Laplacian centrality: A new vertex centrality measurement based on Quasi-Laplacian energy of networks. Phys. A 2019, 527, 121130. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, S. Identification of node centrality based on Laplacian energy of networks. Phys. A 2023, 609, 128353. [Google Scholar] [CrossRef]
- Zhang, Q.; Shuai, B.; Lü, M. A novel method to identify influential nodes in complex networks based on gravity centrality. Inf. Sci. 2022, 618, 98–117. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.; Xu, K. Weak ties: Subtle role of information diffusion in online social networks. Phys. Rev. E 2010, 82, 016105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Tang, S.; Liu, L.; Zheng, H.; Wang, X.; Zheng, Z. Local-forest method for superspreaders identification in online social networks. Entropy 2022, 24, 1279. [Google Scholar] [CrossRef]
- Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2009, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Castellano, C.; Pastor-Satorras, R. Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 2010, 105, 218701. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M. A new measure of rank correlation. Biometrika 1938, 30, 81–89. [Google Scholar] [CrossRef]
- Bae, J.; Kim, S. Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A 2014, 395, 549–559. [Google Scholar] [CrossRef]
- Spring, N.; Mahajan, R.; Wetherall, D.; Anderson, T. Measuring ISP topologies with rocketfuel. IEEE/ACM Trans. Netw. 2004, 12, 2–16. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Guimerà, R.; Danon, L.; Díaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E 2003, 68, 065103. [Google Scholar] [CrossRef] [Green Version]
- Pajek Datasets. Available online: http://vlado.fmf.uni-lj.si/pub/networks/data/ (accessed on 1 February 2023).
- Newman, M.E.J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104. [Google Scholar] [CrossRef] [Green Version]
- Gleiser, P.; Danon, L. Community structure in Jazz. Adv. Complex Syst. 2003, 6, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Rocha, L.E.; Liljeros, F.; Holme, P. Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 2011, 7, e1001109. [Google Scholar] [CrossRef] [PubMed]
- Leskovec, J.; Huttenlocher, D.; Kleinberg, J. Predicting positive and negative links in online social networks. In Proceedings of the 19th international conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 641–650. [Google Scholar]
- Mcauley, J.J.; Leskovec, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. 2012, 25, 548–556. [Google Scholar]
- Adamic, L.A.; Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, Chicago, IL, USA, 21–25 August 2005; pp. 36–43. [Google Scholar]
DP | Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6 | Node 7 |
---|---|---|---|---|---|---|---|
1 | 3 | 3 | 3 | 2 | 3 | 1 | |
3 | 7 | 8 | 9 | 6 | 6 | 3 | |
7 | 20 | 22 | 21 | 14 | 18 | 6 | |
20 | 50 | 55 | 60 | 40 | 41 | 18 | |
Results | 30 | 77 | 85 | 90 | 60 | 65 | 27 |
RDP | Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6 | Node 7 |
---|---|---|---|---|---|---|---|
1.0000 | 3.0000 | 3.0000 | 3.0000 | 2.0000 | 3.0000 | 1.0000 | |
3.0000 | 7.0000 | 8.0000 | 9.0000 | 6.0000 | 6.0000 | 3.0000 | |
1.7500 | 5.0000 | 5.5000 | 5.2500 | 3.5000 | 4.5000 | 1.5000 | |
0.5556 | 1.3889 | 1.5278 | 1.6667 | 1.1111 | 1.1389 | 0.5000 | |
Results | 5.3056 | 13.3889 | 15.0278 | 15.9167 | 10.6111 | 11.6389 | 5.0000 |
Algorithms | Topology | Complexity |
---|---|---|
DC | Local | |
H-index | Local | |
DP/RDP | Local | |
QC | Local | |
LR | Local | |
LF | Local | |
LC | Local | |
DR | Local | |
LGM | Local | |
LGC | Local | |
KS | Global | |
EC | Global | |
BC | Global | |
CC | Global |
Network | N | M | |||
---|---|---|---|---|---|
Router | 5022 | 6258 | 2.4922 | 6.4488 | 0.0786 |
Power | 4941 | 6594 | 2.6691 | 18.9892 | 0.3483 |
1133 | 5451 | 9.6222 | 3.6060 | 0.0565 | |
USAir | 332 | 2126 | 12.8072 | 2.7381 | 0.0231 |
NS | 379 | 914 | 4.8232 | 6.0419 | 0.1424 |
Jazz | 198 | 2742 | 27.6970 | 2.2350 | 0.0266 |
Sex | 15,810 | 38,540 | 4.8754 | 5.7846 | 0.0365 |
WV | 7066 | 10,0736 | 28.5129 | 3.2475 | 0.0069 |
4039 | 88,234 | 43.6910 | 3.6925 | 0.0095 | |
PB | 1222 | 16,714 | 27.3552 | 2.7375 | 0.0125 |
Network | DP = 1 | DP = 2 | DP = 3 | DP = 4 | DP = 5 | RDP = 1 | RDP = 2 | RDP = 3 | RDP = 4 | RDP = 5 |
---|---|---|---|---|---|---|---|---|---|---|
Router | 0.6792 | 0.8063 | 0.7991 | 0.7654 | 0.7563 | 0.6792 | 0.8071 | 0.8159 | 0.8164 | 0.8127 |
Power | 0.6772 | 0.7688 | 0.8138 | 0.8534 | 0.8572 | 0.6772 | 0.7416 | 0.7625 | 0.7702 | 0.7719 |
0.8932 | 0.9230 | 0.9214 | 0.9143 | 0.9073 | 0.8932 | 0.9212 | 0.9241 | 0.9217 | 0.9190 | |
USAir | 0.8984 | 0.9044 | 0.8956 | 0.8957 | 0.8948 | 0.8984 | 0.9046 | 0.8973 | 0.8966 | 0.8955 |
NS | 0.8550 | 0.8991 | 0.8801 | 0.8509 | 0.8174 | 0.8550 | 0.8928 | 0.8995 | 0.8985 | 0.8974 |
Jazz | 0.9043 | 0.9339 | 0.9340 | 0.9219 | 0.9102 | 0.9043 | 0.9324 | 0.9351 | 0.9277 | 0.9201 |
Sex | 0.7520 | 0.7989 | 0.7964 | 0.7933 | 0.7621 | 0.7520 | 0.8029 | 0.8151 | 0.8184 | 0.8066 |
WV | 0.8312 | 0.8379 | 0.8360 | 0.8348 | 0.8341 | 0.8312 | 0.8379 | 0.8361 | 0.8350 | 0.8343 |
0.8003 | 0.8483 | 0.8599 | 0.8641 | 0.8382 | 0.8003 | 0.8474 | 0.8609 | 0.8670 | 0.8515 | |
PB | 0.8964 | 0.9213 | 0.9178 | 0.9150 | 0.9095 | 0.8964 | 0.9214 | 0.9185 | 0.9162 | 0.9118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Huang, X. Identifying Influential Spreaders Using Local Information. Mathematics 2023, 11, 1302. https://doi.org/10.3390/math11061302
Li Z, Huang X. Identifying Influential Spreaders Using Local Information. Mathematics. 2023; 11(6):1302. https://doi.org/10.3390/math11061302
Chicago/Turabian StyleLi, Zhe, and Xinyu Huang. 2023. "Identifying Influential Spreaders Using Local Information" Mathematics 11, no. 6: 1302. https://doi.org/10.3390/math11061302
APA StyleLi, Z., & Huang, X. (2023). Identifying Influential Spreaders Using Local Information. Mathematics, 11(6), 1302. https://doi.org/10.3390/math11061302