ADI Method for Pseudoparabolic Equation with Nonlocal Boundary Conditions
Abstract
:1. Introduction and Formulation of the Problem
2. Alternating Direction Implicit (ADI) Method
2.1. Notation
2.2. The ADI Method
2.3. Reduction of the Three-Layer Scheme to a Two-Layer Scheme
3. Eigenvalues of Matrix
3.1. Eigenvalues of the Matrices and
3.2. Eigenvalues and Eigenvectors of the Matrices and
3.3. Eigenvalues of the Matrix
4. Investigation of the Stability of Finite Difference Scheme
5. Numerical Examples
6. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouziani, A.; Merazga, N. Solution to a semilinear pseudoparabolic problem with integral condition. Electron. J. Differ. Equ. 2006, 2006, 1–18. [Google Scholar]
- Bouziani, A. Initial-boundary value problems for a class of pseudoparabolic equations with integral boundary conditions. J. Math. Anal. Appl. 2004, 291, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Ting, T. A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl. 1974, 45, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Padron, V. Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans. Am. Math. Soc. 2004, 356, 2739–2756. [Google Scholar] [CrossRef]
- Sobolev, V. A Treatise on Radiative Transfer; D. van Nostrand Company: New York, NY, USA, 1963. [Google Scholar] [CrossRef]
- Chudnovskij, A. Teplofizika Pochv; Nauka: Moscow, Russia, 1976. (In Russian) [Google Scholar]
- Dai, D.Q.; Huang, Y. On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation. Nonlinear Anal. 2007, 66, 179–191. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J. Nonlocal pseudo-parabolic equation with memory term and conical singularity: Global existence and blowup. Symmetry 2023, 15, 122. [Google Scholar] [CrossRef]
- Nakhushev, A. On certain approximate method for boundary-value problems for differential equations and its applications in ground waters dynamics. Differenc. Uravn. 1982, 18, 72–81. (In Russian) [Google Scholar]
- Vodakhova, V. A boundary value problem with Nakhushev nonlocal condition for a certain pseudoparabolic moisture-transfer equation. Differenc. Uravn. 1982, 18, 280–285. (In Russian) [Google Scholar]
- Ford, W.; Ting, T. Stability and convergence of difference approximations to pseudo-parabolic partial differential equations. Math. Comput. 1973, 27, 737–743. [Google Scholar] [CrossRef]
- Ewing, R. Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal. 1975, 12, 345–363. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, Y. Solving nonlinear pseudoparabolic equations with nonlocal conditions in reproducing kernel space. Numer. Algorithms 2009, 52, 173–186. [Google Scholar] [CrossRef]
- Chattouh, A.; Saoudi, K.; Nouar, M. Rothe—Legendre pseudospectral method for a semilinear pseudoparabolic equation with nonclassical boundary condition. Nonlinear Anal. Model. Control 2022, 27, 38–53. [Google Scholar] [CrossRef]
- Jachimavičienė, J.; Jesevičiūtė, Ž.; Sapagovas, M. The stability of finite-difference schemes for a pseudoparabolic equation with nonlocal conditions. Numer. Funct. Anal. Optim. 2009, 30, 988–1001. [Google Scholar] [CrossRef]
- Guezane-Lakoud, A.; Belakroum, D. Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions. Appl. Math. Comput. 2012, 218, 4695–4702. [Google Scholar] [CrossRef]
- Beshtokov, M. Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator and difference methods for their solution. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2020, 30, 158–175. [Google Scholar] [CrossRef]
- Beshtokov, M. A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2021, 31, 384–408. [Google Scholar] [CrossRef]
- Beshtokov, M. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2022, 32, 502–527. [Google Scholar] [CrossRef]
- Jachimavičienė, J.; Sapagovas, M.; Štikonas, A.; Štikonienė, O. On the stability of explicit finite difference schemes for a pseudoparabolic equation with nonlocal conditions. Nonlinear Anal. Model. Control 2014, 19, 225–240. [Google Scholar] [CrossRef]
- Čiegis, R.; Tumanova, N. On construction and analysis of finite difference schemes for pseudoparabolic problems with nonlocal boundary conditions. Math. Model. Anal. 2014, 19, 281–297. [Google Scholar] [CrossRef]
- Aitzhanov, S.; Berdyshev, A.; Bekenayeva, K. Solvability issues of a pseudo-parabolic fractional order equation with a nonlinear boundary condition. Fractal Fract. 2021, 5, 134. [Google Scholar] [CrossRef]
- Binh, H.; Hoang, L.; Baleanu, D.; Van, H. Solvability issues of a pseudo-parabolic fractional order equation with a nonlinear boundary condition. Fractal Fract. 2021, 5, 41. [Google Scholar] [CrossRef]
- Shi, L.; Tayebi, S.; Arqub, O.; Osman, M.; Agarwal, P.; Mahamoud, W.; Abdel-Aty, M.; Alhodaly, M. The novel cubic B-spline method for fractional Painleve’ and Bagley–Trovik equations in the Caputo, Caputo–Fabrizio, and conformable fractional sense. Alex. Eng. J. 2023, 65, 413–426. [Google Scholar] [CrossRef]
- Peaceman, D.W.; Rachford, H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 1955, 3, 28–41. [Google Scholar] [CrossRef]
- Pečiulytė, S.; Štikonas, A. On positive eigenfunctions of Sturm–Liouville problem with nonlocal two-point boundary condition. Math. Model. Anal. 2007, 12, 215–226. [Google Scholar] [CrossRef]
- Pečiulytė, S.; Štikonienė, O.; Štikonas, A. Investigation of negative critical points of the characteristic function for problems with nonlocal boundary conditions. Nonlinear Anal. Model. Control 2008, 13, 467–490. [Google Scholar] [CrossRef]
- Novickij, J.; Štikonas, A. On the stability of a weighted finite difference scheme for wave equation with nonlocal boundary conditions. Nonlinear Anal. Model. Control 2014, 19, 460–475. [Google Scholar] [CrossRef]
- Bingelė, K.; Bankauskienė, A.; Štikonas, A. Spectrum curves for a discrete Sturm–Liouville problem with one integral boundary condition. Nonlinear Anal. Model. Control 2019, 24, 755–774. [Google Scholar] [CrossRef]
- Dehghan, M. Alternating direction implicit methods for two-dimensional diffusion with a non-local boundary condition. Intern. J. Comput. Math. 1999, 72, 349–366. [Google Scholar] [CrossRef]
- Noye, B.; Dehghan, M. New explicit finite difference schemes for two-dimensional diffusion subject to specification of mass. Numer. Meth. PDE 1999, 15, 521–534. [Google Scholar] [CrossRef]
- Sapagovas, M.; Kairytė, G.; Štikonienė, O.; Štikonas, A. Alternating direction method for a two-dimensional parabolic equation with a nonlocal boundary condition. Math. Model. Anal. 2007, 12, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Sapagovas, M.; Štikonas, A.; Štikonienė, O. Alternating direction method for the Poisson equation with variable weight coefficients in an integral condition. Differ. Equ. 2011, 47, 1163–1174. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Sciuto, G.L.; Słota, D.; Capizzi, G. Computational methods for parameter identification in 2D fractional system with Riemann-–Liouville derivative. Sensors 2022, 22, 3153. [Google Scholar] [CrossRef] [PubMed]
- Concezzi, M.; Spigler, R. An ADI method for the numerical solution of 3D fractional reaction-diffusion equations. Fractal Fract. 2020, 4, 57. [Google Scholar] [CrossRef]
- Yang, S.; Liu, F.; Feng, L.; Turner, I. Efficient numerical methods for the nonlinear two-sided space-fractional diffusion equation with variable coefficients. Appl. Numer. Math. 2020, 157, 55–68. [Google Scholar] [CrossRef]
- Vabishchevich, P. On a new class of additive (splitting) operator-difference schemes. Math. Comput. 2012, 81, 267–276. [Google Scholar] [CrossRef]
- Vabishchevich, P.; Grigor’ev, A. Splitting schemes for pseudoparabolic equations. Differ. Equ. 2013, 49, 807–814. [Google Scholar] [CrossRef]
- Douglas, J.; Rachford, H.H. On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 1956, 82, 421–489. [Google Scholar] [CrossRef]
- Samarskii, A. The Theory of Difference Schemes; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Voevodin, V.; Kuznecov, Y. Matrices and Computations; Nauka: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Lancaster, P. Lambda-Matrices and Vibrating Systems; Pergamon Press: Oxford, UK, 1966. [Google Scholar] [CrossRef]
- Štikonas, A. The root condition for polynomial of the second order and a spectral stability of finite-difference schemes for Kuramoto-Tsuzuki equations. Math. Model. Anal. 1998, 3, 214–226. [Google Scholar] [CrossRef]
- Varga, R. Matrix Iteratyve Analysis; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, K. An Introduction to Numerical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Isaacson, E.; Keller, H. Analysis of Numerical Methods; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Samarskii, A.; Gulin, A. Numerical Methods; Nauka: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Collatz, L. Functional Analysis and Numerical Mathematics; Elsevier: Amsterdam, The Netherlands, 1966. [Google Scholar] [CrossRef]
- Gulin, A. Stability criteria for non-self-adjoint finite differences schemes in the subspace. Appl. Numer. Math. 2015, 93, 107–113. [Google Scholar] [CrossRef]
- Cahlon, B.; Kulkarni, D.; Shi, P. Stepwise stability for the heat equation with a nonlocal constraint. SIAM J. Numer. Anal. 1995, 32, 571–593. [Google Scholar] [CrossRef]
h | E | |
---|---|---|
h | |||||
E | 0.0166 | 0.0103 | 0.0056 | 0.0028 | 0.0013 |
h | E | ||
---|---|---|---|
0.005 | |||
0.00125 | |||
0.00031250 | |||
0.00007813 | |||
0.00001953 |
T | 0.5 | 1 | 2 | 5 | 10 |
E | 0.0011 | 0.0018 | 0.0027 | 0.0042 | 0.0069 |
0.1 | 0.5 | 1 | 2 | 5 | 10 | |
E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapagovas, M.; Štikonas, A.; Štikonienė, O. ADI Method for Pseudoparabolic Equation with Nonlocal Boundary Conditions. Mathematics 2023, 11, 1303. https://doi.org/10.3390/math11061303
Sapagovas M, Štikonas A, Štikonienė O. ADI Method for Pseudoparabolic Equation with Nonlocal Boundary Conditions. Mathematics. 2023; 11(6):1303. https://doi.org/10.3390/math11061303
Chicago/Turabian StyleSapagovas, Mifodijus, Artūras Štikonas, and Olga Štikonienė. 2023. "ADI Method for Pseudoparabolic Equation with Nonlocal Boundary Conditions" Mathematics 11, no. 6: 1303. https://doi.org/10.3390/math11061303
APA StyleSapagovas, M., Štikonas, A., & Štikonienė, O. (2023). ADI Method for Pseudoparabolic Equation with Nonlocal Boundary Conditions. Mathematics, 11(6), 1303. https://doi.org/10.3390/math11061303