Underwater Image Enhancement Based on the Improved Algorithm of Dark Channel
Abstract
:1. Introduction
2. Related Work
3. Description of Dark Channel
3.1. Color Cast
3.2. Homomorphic Filtering
3.3. Multi-Scale Retinex Algorithm with Color Restoration
3.4. Dark Channel Prior Image Enhancement Algorithm
4. Prior Improved Algorithm of Dark Channel
5. Experiments and Analysis
5.1. Experiments
5.2. Analysis
Image Number | CLAHE | MSRCR | Literature [39] | Literature [40] | Proposed Algorithm in This Paper |
---|---|---|---|---|---|
UIQM | |||||
1 | 1.310 | 2.099 | 1.936 | 4.104 | 4.363 |
2 | 4.352 | 4.262 | 4.351 | 4.396 | 4.370 |
3 | 4.008 | 3.725 | 3.852 | 4.131 | 4.161 |
4 | 5.863 | 6.013 | 4.419 | 5.916 | 6.191 |
5 | 4.256 | 3.966 | 4.238 | 4.314 | 4.399 |
Information Entropy | |||||
1 | 4.635 | 4.180 | 4.330 | 6.515 | 4.777 |
2 | 4.914 | 4.430 | 4.384 | 5.113 | 5.028 |
3 | 4.941 | 4.408 | 4.617 | 4.682 | 4.825 |
4 | 4.833 | 4.822 | 4.682 | 4.700 | 5.634 |
5 | 4.757 | 4.060 | 3.938 | 4.362 | 4.655 |
EVA | |||||
1 | 8.741 | 5.847 | 3.956 | 4.669 | 11.330 |
2 | 14.320 | 11.610 | 6.399 | 13.110 | 18.040 |
3 | 21.110 | 17.090 | 10.400 | 8.951 | 32.480 |
4 | 35.380 | 34.890 | 8.951 | 22.350 | 5.051 |
5 | 39.170 | 20.670 | 16.610 | 15.310 | 42.380 |
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, J.G.; Zhu, J.P.; Tian, H.; Hou, X. Real-time polarization difference underwater imaging based on Stokes vector. Acta Phys. Sin. 2015, 64, 224203. [Google Scholar] [CrossRef]
- Guo, Q.W.; Xue, L.L.; Tang, R.C.; Guo, L.R. Underwater image enhancement based on the dark channel prior and attenuation compensation. J. Ocean Univ. China 2017, 16, 757–765. [Google Scholar] [CrossRef]
- Raveendran, S.; Patil, M.D.; Birajdar, G.K. Underwater image enhancement: A comprehensive review, recent trends, challenges and applications. Artif. Intell. Rev. 2021, 54, 5413–5467. [Google Scholar] [CrossRef]
- Sethi, R.; Sreedevi, I. Adaptive enhancement of underwater images using multi-objective PSO. Multimed. Tools Appl. 2019, 78, 31823–31845. [Google Scholar] [CrossRef]
- Song, H.J.; Wang, R. Underwater image enhancement based on multi-scale fusion and global stretching of dual-model. Mathematics 2021, 9, 595. [Google Scholar] [CrossRef]
- Yuan, X.; Guo, L.X.; Luo, C.T.; Zhou, X.T.; Yu, C.L. A survey of target detection and recognition methods in underwater turbid areas. Appl. Sci. 2022, 12, 4898. [Google Scholar] [CrossRef]
- Bi, P.F.; Xu, J.; Du, X.; Li, J. Generalized robust graph-Laplacian PCA and underwater image recognition. Neural Comput. Appl. 2020, 32, 16993–17010. [Google Scholar] [CrossRef]
- Wang, Y.S.; Ji, Y.; Woo, H.; Tamura, Y.; Tsuchiya, H.; Yamashita, A.; Asama, H. Acoustic camera-based pose graph SLAM for dense 3-D mapping in underwater environments. IEEE J. Ocean. Eng. 2021, 46, 829–847. [Google Scholar] [CrossRef]
- Sharma, S.; Varma, T. Graph signal processing based underwater image enhancement techniques. Eng. Sci. Technol. 2022, 32, 101059. [Google Scholar]
- Alenezi, F.; Armghan, A.; Santosh, K.C. Underwater image dehazing using global color features. Eng. Appl. Artif. Intel. 2022, 116, 105489. [Google Scholar] [CrossRef]
- Hu, K.; Weng, C.H.; Zhang, Y.W.; Jin, J.L.; Xia, Q.F. An overview of underwater vision enhancement: From traditional methods to recent deep learning. J. Mar. Sci. Eng. 2022, 10, 241. [Google Scholar] [CrossRef]
- Han, M.; Lyu, Z.Y.; Qiu, T.; Xu, M.L. A review on intelligence dehazing and color restoration for underwater images. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1820–1832. [Google Scholar] [CrossRef]
- Zheng, M.C.; Luo, W.L. Underwater image enhancement using improved CNN based defogging. Electronics 2022, 11, 150. [Google Scholar] [CrossRef]
- Li, D.Y.; Zhao, J.J.; Ma, J.Y. Experimental studies on rock thin-section image classification by deep learning-based approaches. Mathematics 2022, 10, 2317. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Qin, X.; Xiao, Y.C.; Qian, J.J.; Bo, L.L.; Zhang, H.; Li, H.R.; Zhong, Z.M. Deep retinex decomposition network for underwater image enhancement. Comput. Electr. Eng. 2022, 100, 107822. [Google Scholar] [CrossRef]
- Xue, X.W.; Hao, Z.H.; Ma, L.; Wang, Y.; Liu, R.S. Joint luminance and chrominance learning for underwater image enhancement. IEEE Signal Process. Lett. 2021, 28, 818–822. [Google Scholar] [CrossRef]
- Gao, F.R.; Wang, K.; Yang, Z.Y.; Wang, Y.J.; Zhang, Q.Z. Underwater image enhancement based on local contrast correction and multi-scale fusion. J. Mar. Sci. Eng. 2021, 9, 225. [Google Scholar] [CrossRef]
- Lu, J.X.; Yuan, F.; Yang, W.D.; Cheng, E. An imaging information estimation network for underwater image color restoration. IEEE J. Ocean. Eng. 2021, 46, 1228–1239. [Google Scholar] [CrossRef]
- Gangisetty, S.; Rai, R.R. Underwater image restoration using deep encoder-decoder network with symmetric skip connections. Signal Image Video Process. 2022, 16, 247–255. [Google Scholar] [CrossRef]
- Fu, X.Y.; Cao, X.Y. Underwater image enhancement with global-local networks and compressed-histogram equalization. Signal Process. Image Commun. 2020, 86, 115892. [Google Scholar] [CrossRef]
- Moghimi, M.K.; Mohanna, F. Real-time underwater image resolution enhancement using super-resolution with deep convolutional neural networks. J. Real-Time Image Process. 2021, 18, 1653–1667. [Google Scholar] [CrossRef]
- Liu, S.B.; Fan, H.J.; Lin, S.; Wang, Q.; Ding, N.D.; Tang, Y.D. Adaptive learning attention network for underwater image enhancement. IEEE Robot. Autom. Lett. 2022, 7, 5326–5333. [Google Scholar] [CrossRef]
- Song, W.; Xing, J.J.; Du, Y.L.; He, Q. Underwater image enhancement based on generative adversarial network with preprocessed image penalty. Laser Optoelectron. Prog. 2021, 58, 1210024. [Google Scholar]
- Zhong, X.H.; Chen, Z.H.; Wang, D.D. Local-CycleGAN: A general end-to-end network for visual enhancement in complex deep-water environment. Appl. Intell. 2021, 51, 1947–1958. [Google Scholar] [CrossRef]
- Yuan, H.C.; Zhang, S.; Chen, G.Q.; Yang, Y. Underwater image fish recognition technology based on transfer learning and image enhancement. J. Coast. Res. 2020, 105, 124–128. [Google Scholar] [CrossRef]
- Li, C.Y.; Guo, C.L.; Ren, W.Q.; Cong, R.M.; Hou, J.H.; Kwong, S.; Tao, D.C. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2020, 29, 4376–4389. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Hu, K.; Du, Y.X.; Wei, Z.Q.; Sheng, Z.B.; Hu, J.T. Underwater image enhancement based on conditional generative adversarial network. Signal Process. Image Commun. 2020, 81, 115723. [Google Scholar] [CrossRef]
- Wu, S.C.; Luo, T.; Jiang, G.Y.; Yu, M.; Xu, H.Y.; Zhu, Z.J.; Song, Y. A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging. IEEE J. Ocean. Eng. 2021, 46, 1213–1227. [Google Scholar] [CrossRef]
- Yang, H.; Tian, F.; Qi, Q.; Wu, Q.M.J.; Li, K.Q. Underwater image enhancement with latent consistency learning-based color transfer. IET Image Process 2022, 16, 1594–1612. [Google Scholar] [CrossRef]
- Guo, Y.C.; Li, H.Y.; Zhuang, P.X. Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 2020, 45, 862–870. [Google Scholar] [CrossRef]
- Fang, M.; Liu, X.H.; Fu, F.R. Multi-scale underwater image enhancement network based on attention mechanism. J. Electron. Inf. Technol. 2021, 43, 3513–3521. [Google Scholar]
- Kim, H.G.; Seo, J.M.; Kim, S.M. Comparison of GAN deep learning methods for underwater optical image enhancement. J. Ocean Eng. Technol. 2022, 36, 32–40. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, Y.C.; Tian, F.; Wu, Q.M.J.; Li, K.Q.; Luan, X.; Song, D.L. Underwater image co-enhancement with correlation feature matching and joint learning. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1133–1147. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.H.; Tong, L.; Liu, Z.H.; Zhao, A.T.; Zhang, Q.N.; Dong, J.Y.; Zhou, H.Y. Perceptual underwater image enhancement with deep-learning and physical priors. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3078–3092. [Google Scholar] [CrossRef]
- Zhu, H.B.; Han, X.; Tao, Y.R. Semi-supervised advancement of underwater visual quality. Meas. Sci. Technol. 2021, 32, 015404. [Google Scholar] [CrossRef]
- Lin, R.J.; Liu, J.Y.; Liu, R.S.; Fan, X. Global structure-guided learning framework for underwater image enhancement. Vis. Comput. 2022, 38, 4419–4434. [Google Scholar] [CrossRef]
- Lin, Y.F.; Shen, L.Q.; Wang, Z.Y.; Wang, K.; Zhang, X. Attenuation coefficient guided two-stage network for underwater image restoration. IEEE Signal Process. Lett. 2021, 28, 199–203. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Chu, J.K.; Chen, Y.T.; Liu, J.Y.; Gong, W.Z. Polarization-based underwater image enhancement using the neural network of Mueller matrix images. J. Mod. Opt. 2022, 69, 264–271. [Google Scholar] [CrossRef]
- He, K.M.; Sun, J.; Tang, X.O. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar]
- Han, P.L.; Liu, F.; Zhang, G.; Tao, Y.; Shao, X.P. Multi-scale analysis method of underwater polarization imaging. Acta Phys. Sin. 2018, 67, 054202. [Google Scholar]
- Mi, Z.T.; Li, Y.Y.; Wang, Y.F.; Fu, X.P. Multi-purpose oriented real-world underwater image enhancement. IEEE Access 2020, 8, 112957–112968. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D. Underwater Image Enhancement Based on the Improved Algorithm of Dark Channel. Mathematics 2023, 11, 1382. https://doi.org/10.3390/math11061382
Zhu D. Underwater Image Enhancement Based on the Improved Algorithm of Dark Channel. Mathematics. 2023; 11(6):1382. https://doi.org/10.3390/math11061382
Chicago/Turabian StyleZhu, Dachang. 2023. "Underwater Image Enhancement Based on the Improved Algorithm of Dark Channel" Mathematics 11, no. 6: 1382. https://doi.org/10.3390/math11061382
APA StyleZhu, D. (2023). Underwater Image Enhancement Based on the Improved Algorithm of Dark Channel. Mathematics, 11(6), 1382. https://doi.org/10.3390/math11061382