On the Generalized Adjacency Spread of a Graph
Abstract
:1. Introduction
2. Solution of Problem 1
- If then for
- If then for
- If and , then .
- If , and , then .
3. Bounds for of a Graph G
- If then
- If then
- If , we have that the largest element of is ; therefore, we have that
- If , the largest element of is . So
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikiforov, V. Merging the A- and Q-spectral theories. Appl. Anal. Discrete Math. 2017, 11, 81–107. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhou, B. On the α-spectral radius of graphs. Appl. Anal. Discrete Math. 2020, 14, 431–458. [Google Scholar] [CrossRef]
- Li, S.; Wang, S. The Aα-spectrum of graph product. Electron. J. Linear Algebra 2019, 35, 473–481. [Google Scholar] [CrossRef]
- Lin, Z.; Miao, L.; Guo, S. Bounds on the Aα-spread of a graph. Electron. J. Linear Algebra 2020, 36, 214–227. [Google Scholar] [CrossRef]
- Liu, S.; Das, K.C.; Sun, S.; Shu, J. On the least eigenvalue of Aα-matrix of graphs. Linear Algebra Appl. 2020, 586, 347–376. [Google Scholar] [CrossRef]
- Liu, X.; Liu, S. On the Aα-characteristic polynomial of a graph. Linear Algebra Appl. 2018, 546, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Pastén, G.; Rojo, O.; Medina, L. On the Aα-eigenvalues of signed graphs. Mathematics 2021, 9, 1990. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Liu, J.-B.; Wei, B. On the Aα-spectral radii of cactus graphs. Mathematics 2020, 8, 869. [Google Scholar] [CrossRef]
- Liu, B.; Mu-huo, L. On the spread of the spectrum of a graph. Discrete Math. 2009, 309, 2727–2732. [Google Scholar] [CrossRef] [Green Version]
- Baghipur, M.; Ghorbani, M.; Ganie, H.A.; Pirzada, S. On the eigenvalues and spread of the generalized distance matrix of a graph. Comp. Appl. Math. 2022, 41, 215. [Google Scholar] [CrossRef]
- Baghipur, M.; Ghorbani, S.; Ganie, H.A.; Shang, Y. On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue. Mathematics 2021, 9, 512. [Google Scholar] [CrossRef]
- Das, K.C.; Gutman, I.; Furtula, B. On spectral radius and energy of extended adjacency matrix of graphs. Appl. Math. Comput. 2017, 296, 116–123. [Google Scholar] [CrossRef]
- Ghorbani, M.; Li, X.; Zangi, S.; Amraei, N. On the eigenvalue and energy of extended adjacency matrix. Appl. Math. Comput. 2021, 397, 125939. [Google Scholar] [CrossRef]
- Gregory, D.A.; Hershkowitz, D.; Kirkland, S.J. The spread of the spectrum of a graph. Linear Algebra Appl. 2001, 332, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhou, B. On adjacency-distance spectral radius and spread of graphs. Appl. Math. Comput. 2020, 369, 124819. [Google Scholar] [CrossRef]
- He, C.; Wang, W.; Li, Y.; Liu, L. Some Nordhaus-Gaddum type results of Aα-eigenvalues of weighted graphs. Appl. Math. Comput. 2021, 393, 125761. [Google Scholar]
- Huang, X.; Lin, H.; Xue, J. The Nordhaus–Gaddum type inequalities of Aα-matrix. Appl. Math. Comput. 2020, 365, 124716. [Google Scholar]
- Liu, M.; Liu, B. The signless Laplacian spread. Linear Algebra Appl. 2010, 432, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.S.; de Lima, L.S.; de Abreu, N.M.M.; Kirkland, S. Bounds on the Q-spread of a graph. Linear Algebra Appl. 2010, 432, 2342–2351. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Mao, Y.; Furtula, B.; Wang, X. Bounds for the spectral radius and energy of extended adjacency matrix of graphs. Linear Multilinear Algebra 2021, 69, 1813–1824. [Google Scholar] [CrossRef]
- Lin, Z.; Miao, L.; Guo, S. The Aα-spread of a graph. Linear Algebra Appl. 2020, 606, 1–22. [Google Scholar] [CrossRef]
- Horn, R.; Johnson, C. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Mirsky, L. The spread of a matrix. Mathematika 1956, 3, 127–130. [Google Scholar] [CrossRef]
- So, W. Commutativity and spectra of Hermitian matrices. Linear Algebra Appl. 1994, 212–213, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.R.; Hoffman, A.J. Bounds for the spectrum of normal matrices. Linear Algebra Appl. 1994, 201, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Marsli, R. Bounds for the smallest and the largest eigenvalues of hermitian matrices. Int. J. Algebra 2015, 9, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-J.; Weng, C.-W. A matrix realization of spectral bounds of the spectral radius of a nonnegative matrix. arXiv 2017, arXiv:1711.03274. [Google Scholar]
- Zhan, X.Z. Extremal eigenvalues of real symmetric matrices with entries in an interval. SIAM J. Matrix Anal. Appl. 2006, 27, 85–860. [Google Scholar] [CrossRef] [Green Version]
- Gümüş, I.H.; Hirzallah, O.; Kittaneh, F. Eigenvalue localization for complex matrices. ELA 2014, 27, 892–906. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Mirsky, L. The areal spread of matrices. Linear Algebra Appl. 1969, 2, 127–129. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghipur, M.; Ghorbani, M.; Pirzada, S.; Amraei, N. On the Generalized Adjacency Spread of a Graph. Mathematics 2023, 11, 1416. https://doi.org/10.3390/math11061416
Baghipur M, Ghorbani M, Pirzada S, Amraei N. On the Generalized Adjacency Spread of a Graph. Mathematics. 2023; 11(6):1416. https://doi.org/10.3390/math11061416
Chicago/Turabian StyleBaghipur, Maryam, Modjtaba Ghorbani, Shariefuddin Pirzada, and Najaf Amraei. 2023. "On the Generalized Adjacency Spread of a Graph" Mathematics 11, no. 6: 1416. https://doi.org/10.3390/math11061416
APA StyleBaghipur, M., Ghorbani, M., Pirzada, S., & Amraei, N. (2023). On the Generalized Adjacency Spread of a Graph. Mathematics, 11(6), 1416. https://doi.org/10.3390/math11061416