A Note on the Geometry of RW Space-Times
Abstract
:1. Introduction
2. Notes on RW Space-Times
3. Ricci Curvature Conditions on RW Space-Times
3.1. Semi-Symmetric Ricci Curvature
3.2. Generalized Recurrent Ricci Curvature
3.3. Codazzi Type of Ricci Tensor
4. Riemann Curvature Tensor on RW Space-Times
4.1. Locally Symmetric RW Space-Time
- M has a constant curvature. The Riemann tensor, the Ricci tensor, and the equation of state take the form
- M is a static space-time.
4.2. Recurrent RW Space-Times
4.3. Harmonic RW Space-Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, B.-Y. A simple characterization of generalized Robertson–Walker spacetimes. Gen. Relativ. Gravit. 2014, 46, 1833. [Google Scholar] [CrossRef] [Green Version]
- Mantica, C.A.; Molinari, L.G. Generalized Robertson—Walker spacetimes—A survey. Int. Geom. Methods Mod. Phys. 2017, 14, 1730001. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J.B.; Podolsky, J. Exact Space-Times in Einstein’s General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Mantica, C.A.; Molinari, L.G.; Suh, Y.; Shenawy, S. Perfect-Fluid, Generalized Robertson-Walker Space-times, and Gray’s Decomposition. J. Math. Phys. 2019, 60, 052506. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G. On the Weyl and Ricci tensors of Generalized Robertson-Walker space-times. J. Math. Phys. 2016, 57, 102502. [Google Scholar] [CrossRef]
- Mantica, C.A.; De, U.C.; Jin Suh, Y.; Molinari, L.G. Perfect fluid spacetimes with harmonic generalized curvature tensor. Osaka J. Math. 2019, 56, 173–182. [Google Scholar]
- Sanchez, M. On the geometry of generalized Robertson-Walker spacetimes: Geodesics. Gen. Relativ. Gravit. 1998, 30, 915–932. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Mantica, C.A.; Molinari, L. Cosmological perfect-fluids in f(R) gravity. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950008. [Google Scholar] [CrossRef] [Green Version]
- Chaki, M.C. On generalized quasi Einstein manifolds. Publ. Math. Debr. 2001, 58, 683–691. [Google Scholar] [CrossRef]
- Ehlers, J.; Geren, P.; Sachs, R.K. Isotropic Solutions of the Einstein-Liouville Equations. J. Math. Phys. 1968, 9, 1344–1349. [Google Scholar] [CrossRef] [Green Version]
- De, U.C.; Suh, Y.J.; Chaubey, S.K. Semi-Symmetric Curvature Properties of Robertson–Walker Spacetimes. J. Math. Phys. Anal. Geom. 2022, 18, 368–381. [Google Scholar]
- Chavanis, P.-H. Cosmology with a stiff matter era. Phys. Rev. D 2015, 92, 103004. [Google Scholar] [CrossRef] [Green Version]
- Guilfoyle, B.S.; Nolan, B.C. Yang’s Gravitational Theory. Gen. Relativ. Gravit. 1998, 30, 473–495. [Google Scholar] [CrossRef] [Green Version]
- Guler, S.; Demirbag, S.A. On Ricci symmetric generalized quasi Einstein spacetimes. Miskolc Math. Notes 2015, 16, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Mantica, C.A.; Suh, Y.J.; De, U. A note on generalized Robertson—Walker space-times. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1650079. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, I.; Senovilla, J.M.M. Note on (conformally) semi-symmetric spacetimes. Class. Quantum Gravity 2010, 27, 027001. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenawy, S.; De, U.C.; Bin Turki, N. A Note on the Geometry of RW Space-Times. Mathematics 2023, 11, 1440. https://doi.org/10.3390/math11061440
Shenawy S, De UC, Bin Turki N. A Note on the Geometry of RW Space-Times. Mathematics. 2023; 11(6):1440. https://doi.org/10.3390/math11061440
Chicago/Turabian StyleShenawy, Sameh, Uday Chand De, and Nasser Bin Turki. 2023. "A Note on the Geometry of RW Space-Times" Mathematics 11, no. 6: 1440. https://doi.org/10.3390/math11061440
APA StyleShenawy, S., De, U. C., & Bin Turki, N. (2023). A Note on the Geometry of RW Space-Times. Mathematics, 11(6), 1440. https://doi.org/10.3390/math11061440