Potato Blight Detection Using Fine-Tuned CNN Architecture
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
Data Balancing and Augmentation
Algorithm 1. Data balancing. |
Input: Healthy potato leave image directory from the PlantVillage dataset. Output: Healthy potato leave image directory with an expanded number of images. 1: i = 0 2: if (i ≤ 4) 3: Select 10 random images 4: Create 10 × 10 copies of each image 5: i = i + 1 6: goto step 2 7: else 8: stop |
4. Proposed Model
5. Results
5.1. Experimental Setup
5.2. Evaluation Metrics and Performance Analysis
6. Comparison with Existing Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alston, J.M.; Pardey, P.G. Agriculture in the Global Economy. J. Econ. Perspect. 2014, 28, 121–146. [Google Scholar] [CrossRef] [Green Version]
- Contribution of Agriculture Sector towards GDP Agriculture Has Been the Bright Spot in the Economy despite COVID-19. Available online: https://www.pib.gov.in/indexd.aspx (accessed on 29 September 2022).
- Li, L.; Zhang, S.; Wang, B. Plant Disease Detection and Classification by Deep Learning—A Review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Hwang, Y.T.; Wijekoon, C.; Kalischuk, M.; Johnson, D.; Howard, R.; Prüfer, D.; Kawchuk, L. Evolution and Management of the Irish Potato Famine Pathogen Phytophthora infestans in Canada and the United States. Am. J. Potato Res. 2014, 91, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Vargas, A.M.; Ocampo, L.M.Q.; Céspedes, M.C.; Carreño, N.; González, A.; Rojas, A.; Zuluaga, A.P.; Myers, K.; Fry, W.E.; Jiménez, P.; et al. Characterization of Phytophthora infestans populations in Colombia: First report of the A2 mating type. Phytopathology 2009, 99, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, W.E. Phytophthora infestans: New Tools (and Old Ones) Lead to New Understanding and Precision Management. Annu. Rev. Phytopathol. 2016, 54, 529–547. [Google Scholar] [CrossRef] [PubMed]
- European and Mediterranean Plant Protection Organization. Phytophthora infestans on potato. EPPO 2008, 38, 268–271. [Google Scholar]
- Forbes, G.; Perez, W.; Piedra, J.A. Evaluacion de la Resistencia en Genotipos de Papa a Phytophthora infestans Bajo Condiciones de Campo: Guia Para Colaboradores Internacionales; International Potato Center: Lima, Peru, 2014.
- Dawod, R.G.; Dobre, C. Upper and Lower Leaf Side Detection with Machine Learning Methods. Sensors 2022, 22, 2696. [Google Scholar] [CrossRef]
- Khan, M.A.; Akram, T.; Sharif, M.; Javed, K.; Raza, M.; Saba, T. An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection. Multimed. Tools Appl. 2020, 79, 18627–18656. [Google Scholar] [CrossRef]
- Scientist, D.; Bengaluru, T.M.; Nadu, T. Rice Plant Disease Identification Using Artificial Intelligence. Int. J. Electr. Eng. Technol. 2020, 11, 392–402. [Google Scholar]
- Dubey, S.R.; Jalal, A.S. Adapted Approach for Fruit Disease Identification using Images. In Image Processing: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2013; pp. 1395–1409. [Google Scholar]
- Yun, S.; Xianfeng, W.; Shanwen, Z.; Chuanlei, Z. PNN based crop disease recognition with leaf image features and meteorological data. Int. J. Agric. Biol. Eng. 2015, 8, 60–68. [Google Scholar]
- Li, G.; Ma, Z.; Wang, H. Image Recognition of Grape Downy Mildew and Grape. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 29–31 October 2011; pp. 151–162. [Google Scholar]
- Rauf, H.T.; Saleem, B.A.; Lali, M.I.U.; Khan, M.A.; Sharif, M.; Bukhari, S.A.C. A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning. Data Brief 2019, 26, 104340. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, R.; Chatterjee, J.M.; Jhanjhi, N.; Brohi, S.N. Performance of deep learning vs. machine learning in plant leaf disease detection. Microprocess. Microsyst. 2021, 80, 103615. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Q.; Liu, A.; Meng, X. Can Deep Learning Identify Tomato Leaf Disease? Adv. Multimed. 2018, 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Amara, J.; Bouaziz, B.; Algergawy, A. A Deep Learning-based Approach for Banana Leaf Diseases Classification. In Proceedings of the BTW (Workshops), Stuttgart, Germany, 6–10 March 2017; pp. 79–88. [Google Scholar]
- Türkoğlu, M.; Hanbay, D. Plant disease and pest detection using deep learning-based features. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 1636–1651. [Google Scholar] [CrossRef]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep learning for image-based cassava disease detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 2019, 86, 105933. [Google Scholar]
- Barbedo, J.G.A. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 2018, 172, 84–91. [Google Scholar] [CrossRef]
- Vardhini, P.H.; Asritha, S.; Devi, Y.S. Efficient Disease Detection of Paddy Crop using CNN. In Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020; pp. 116–119. [Google Scholar]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Panigrahi, K.P.; Sahoo, A.K.; Das, H. A CNN Approach for Corn Leaves Disease Detection to support Digital Agricultural System. In Proceedings of the 4th International Conference on Trends in Electronics and Information, Tirunelveli, India, 15–17 June 2020; pp. 678–683. [Google Scholar]
- Narayanan, K.L.; Krishnan, R.S.; Robinson, Y.H.; Julie, E.G.; Vimal, S.; Saravanan, V.; Kaliappan, M. Banana Plant Disease Classification Using Hybrid Convolutional Neural Network. Comput. Intell. Neurosci. 2022, 2022, 9153699. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Udupi, V.R.; Patil, S.B. Identification of plant diseases using convolutional neural networks. Int. J. Inf. Technol. 2021, 13, 2461–2470. [Google Scholar] [CrossRef]
- Abayomi-Alli, O.O.; Damaševičius, R.; Misra, S.; Maskeliūnas, R. Cassava disease recognition from low-quality images using enhanced data augmentation model and deep learning. Expert Syst. 2021, 38, e12746. [Google Scholar] [CrossRef]
- Abbas, A.; Jain, S.; Gour, M.; Vankudothu, S. Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput. Electron. Agric. 2021, 187, 106279. [Google Scholar] [CrossRef]
- Anh, P.T.; Duc, H.T.M. A Benchmark of Deep Learning Models for Multi-leaf Diseases for Edge Devices. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 14–16 October 2021; pp. 318–323. [Google Scholar]
- Kabir, M.M.; Ohi, A.Q.; Mridha, M.F. A Multi-plant disease diagnosis method using convolutional neural network. arXiv 2020, arXiv:2011.05151. [Google Scholar]
- Astani, M.; Hasheminejad, M.; Vaghefi, M. A diverse ensemble classifier for tomato disease recognition. Comput. Electron. Agric. 2022, 198, 107054. [Google Scholar] [CrossRef]
- Prodeep, A.R.; Hoque, A.M.; Kabir, M.M.; Rahman, M.S.; Mridha, M.F. Plant Disease Identification from Leaf Images using Deep CNN’s EfficientNet. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 523–527. [Google Scholar]
- Gokulnath, B.V. Identifying and classifying plant disease using resilient LF-CNN. Ecol. Inform. 2021, 63, 101283. [Google Scholar]
- Enkvetchakul, P.; Surinta, O. Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition. Appl. Sci. Eng. Prog. 2022, 15, 3810. [Google Scholar] [CrossRef]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef]
- Nagaraju, M.; Chawla, P. Systematic review of deep learning techniques in plant disease detection. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 547–560. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar]
- Fernández-Quintanilla, C.; Peña, J.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 2018, 58, 259–272. [Google Scholar] [CrossRef]
- Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 2021, 11, 707. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Bangari, S.; Rachana, P.; Gupta, N.; Sudi, P.S.; Baniya, K.K. A Survey on Disease Detection of a potato Leaf Using CNN. In Proceedings of the 2nd IEEE International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 144–149. [Google Scholar]
- Iqbal, M.A.; Talukder, K.H. Detection of potato disease using image segmentation and machine learning. In 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET); IEEE: Piscataway, NJ, USA, 2020; pp. 43–47. [Google Scholar]
- Singh, A.; Kaur, H. Potato plant leaves disease detection and classification ussing machine learning methodologies. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1022, p. 012121. [Google Scholar]
- Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE); IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Chakraborty, K.K.; Mukherjee, R.; Chakroborty, C.; Bora, K. Automated recognition of optical image based potato leaf blight diseases using deep learning. Physiol. Mol. Plant Pathol. 2022, 117, 101781. [Google Scholar] [CrossRef]
- Mahum, R.; Munir, H.; Mughal, Z.U.N.; Awais, M.; Sher Khan, F.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. Int. J. 2023, 29, 303–326. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Nair, R.; Alzain, E.; Alkahtani, H.; Koundal, D. Deep Learning Model for the Detection of Real Time Breast Cancer Images Using Improved Dilation-Based Method. Diagnostics 2022, 12, 2505. [Google Scholar] [CrossRef] [PubMed]
- Aldhyani, T.H.H.; Verma, A.; Al-Adhaileh, M.H.; Koundal, D. Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network. Diagnostics 2022, 12, 2048. [Google Scholar] [CrossRef]
- Mohamed, S.I. Potato leaf disease diagnosis and detection system based on convolution neural network. Int. J. Recent Technol. Eng. 2020, 9, 254–259. [Google Scholar] [CrossRef]
Class | Count |
---|---|
Late blight | 1000 |
Early blight | 1000 |
Healthy leaves | 152 |
Total | 2152 |
Class | Count |
---|---|
Early blight (0) | 1000 |
Late blight (1) | 1000 |
Healthy leaves (2) | 652 |
Total | 2652 |
Class | Early Blight | Late Blight | Healthy | Total |
---|---|---|---|---|
No. of training samples | 789 | 795 | 524 | 2108 |
No. of testing samples | 107 | 109 | 72 | 288 |
No. of validation samples | 84 | 97 | 75 | 256 |
Optimiser | Batch Size | # Epochs | Activation Functions | Learning Rate | # Trainable Parameters |
---|---|---|---|---|---|
Adam | 32 | 45 | ReLU | 0.001 | 839,203 |
Classes | TP | FP | TN | FN | Accuracy | Precession | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|
Early blight | 103 | 3 | 185 | 0 | 0.99 | 1.0 | 0.97 | 0.98 |
Late blight | 107 | 0 | 181 | 3 | 0.99 | 0.97 | 1.0 | 0.99 |
Healthy | 78 | 0 | 210 | 0 | 1.0 | 1.0 | 1.0 | 1.0 |
Folds | k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
Precision | 0.9765 | 0.9595 | 0.9172 | 1.0000 | 0.9268 | 0.9394 | 0.9854 | 0.9550 | 1.0000 | 0.9663 | 0.9770 | 0.9852 | 0.9531 | 0.9515 | 1.0000 |
Recall | 0.9674 | 0.9071 | 1.0000 | 0.9282 | 0.9596 | 1.0000 | 0.9621 | 0.9845 | 0.9920 | 0.9829 | 0.9636 | 0.9852 | 0.9632 | 0.9561 | 0.9778 |
F1-Score | 0.9720 | 0.9326 | 0.9568 | 0.9628 | 0.9429 | 0.9688 | 0.9736 | 0.9695 | 0.9960 | 0.9745 | 0.9703 | 0.9852 | 0.9581 | 0.9538 | 0.9888 |
Dataset | Mean | Standard Deviation |
---|---|---|
Training | 0.9682 | 0.0084 |
Validation | 0.9628 | 0.0075 |
Testing | 0.9656 | 0.0093 |
References | Model | Accuracy(%) | Precision | Recall | F1-Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |||
Iqbal et al. [44] | Random Forest | 97.0 | 1.0 | 0.91 | 1.0 | 0.94 | 1.0 | 0.96 | 0.97 | 0.95 | 0.98 |
Singh et al. [45] | GLCM + SVM | 95.99 | 0.98 | 0.91 | 0.99 | 0.94 | 0.95 | 0.98 | 0.96 | 0.93 | 0.98 |
Islam et al. [46] | SVM | 95 | 0.97 | 0.89 | 0.95 | 0.93 | 0.94 | 0.98 | 0.95 | 0.98 | 0.92 |
Chakraborty et al. [47] | VGG 16 | 92.69 | - | - | - | - | - | - | - | - | - |
VGG 19 | 80.39 | - | - | - | - | - | - | - | - | - | |
ResNet 50 | 73.75 | - | - | - | - | - | - | - | - | - | |
MobileNet | 78.84 | - | - | - | - | - | - | - | - | - | |
VGG 16(fine-tuned) | 97.89 | 0.9721 | 0.9613 | 0.9617 | |||||||
Mahum et al. [48] | DenseNet(customised) | 97.2 | 0.99 | 0.99 | 0.96 | 0.99 | 0.98 | 1 | 0.99 | 0.99 | 0.99 |
Mohamed et al. [51] | CNN | 98.2 | - | - | - | - | - | - | - | - | - |
Proposed model | CNN(customised) | 99 | 1 | 0.97 | 1 | 0.97 | 1 | 1 | 0.98 | 0.99 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Adhaileh, M.H.; Verma, A.; Aldhyani, T.H.H.; Koundal, D. Potato Blight Detection Using Fine-Tuned CNN Architecture. Mathematics 2023, 11, 1516. https://doi.org/10.3390/math11061516
Al-Adhaileh MH, Verma A, Aldhyani THH, Koundal D. Potato Blight Detection Using Fine-Tuned CNN Architecture. Mathematics. 2023; 11(6):1516. https://doi.org/10.3390/math11061516
Chicago/Turabian StyleAl-Adhaileh, Mosleh Hmoud, Amit Verma, Theyazn H. H. Aldhyani, and Deepika Koundal. 2023. "Potato Blight Detection Using Fine-Tuned CNN Architecture" Mathematics 11, no. 6: 1516. https://doi.org/10.3390/math11061516
APA StyleAl-Adhaileh, M. H., Verma, A., Aldhyani, T. H. H., & Koundal, D. (2023). Potato Blight Detection Using Fine-Tuned CNN Architecture. Mathematics, 11(6), 1516. https://doi.org/10.3390/math11061516