General Fractional Calculus in Multi-Dimensional Space: Riesz Form
Abstract
:1. Introduction
2. Preliminaries: Fourier Convolution and Its Properties
3. Sets of Functions and Kernel Pairs
4. General Fractional Operators of Riesz Form
5. Semi-Group Properties of Riesz GF Integration
6. Action of Laplacian on Riesz GF Integrals
7. Fundamental Theorems of GFC in Riesz Form
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-558840-9. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780444518323. [Google Scholar]
- Diethelm, F. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef] [Green Version]
- Kochubei, A.; Yu, L. (Eds.) Handbook of Fractional Calculus with Applications; Basic Theory Series; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; Volume 1, 481p. [Google Scholar] [CrossRef]
- Kochubei, A.; Yu, L. (Eds.) Handbook of Fractional Calculus with Applications; Fractional Differential Equations Series; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; Volume 2. [Google Scholar] [CrossRef] [Green Version]
- Beghin, L.; Mainardi, F.; Garrappa, R. Nonlocal and Fractional Operators; Springer: Cham, Switzerland, 2021; 308p. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics. Recent Advances; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherland; London, UK, 2015. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; Worls Scientific: Singapore, 2018. [Google Scholar] [CrossRef]
- MDPI. Mathematical Economics: Application of Fractional Calculus; MDPI: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany, 2021; 602p. [Google Scholar] [CrossRef]
- Tarasov, V.E. Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Tarasov, V.E. Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin, Germany, 2019. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F. Considerations on fractional calculus: Interpretations and applications. In Transform Methods and Special Functions; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1998; pp. 594–597. ISBN 954-8986-05-1. [Google Scholar]
- Gorenflo, R. Afterthoughts on interpretation of fractional derivatives and integrals. In Transform Methods and Special Functions; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1998; pp. 589–591. ISBN 954-8986-05-1. [Google Scholar]
- Kiryakova, V. A long standing conjecture failes. In Transform Methods and Special Functions; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1998; pp. 579–588. [Google Scholar]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom. Remote Control 2013, 74, 543–574. [Google Scholar] [CrossRef]
- Nigmatullin, R.R. A fractional integral and its physical interpretation. Theor. Math. Phys. 1992, 90, 242–251. [Google Scholar] [CrossRef]
- Rutman, R.S. A fractional integral and its physical interpretation. Theor. Math. Phys. 1994, 100, 1154–1156. [Google Scholar] [CrossRef]
- Rutman, R.S. On physical interpretations of fractional integration and differentiation. Theor. Math. Phys. 1995, 105, 1509–1519. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Molz, F.J.; Fix, G.J.; Lu, S. A physical interpretation for the fractional derivatives in Levy diffusion. Appl. Math. Lett. 2002, 15, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I.; Despotovic, V.; Skovranek, T.; McNaughton, B.H. Shadows on the walls: Geometric interpretation of fractional integration. J. Online Math. Its Appl. 2007, 7, 1664. [Google Scholar]
- Herrmann, R. Towards a geometric interpretation of generalized fractional integrals—Erdelyi-Kober type integrals on RN, as an example. Fract. Calc. Appl. Anal. 2014, 17, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 2016, 19, 1200–1221. [Google Scholar] [CrossRef]
- Husain, H.S.; Sultana, M. Principal parts of a vector bundle on projective line and the fractional derivative. Turk. J. Math. 2019, 43, 3. [Google Scholar] [CrossRef]
- Podlubny, I. Geometrical and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- Moshrefi-Torbati, M.; Hammond, J.K. Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 1998, 335, 1077–1086. [Google Scholar] [CrossRef]
- Tavassoli, M.H.; Tavassoli, A.; Ostad Rahimi, M.R. The geometric and physical interpretation of fractional order derivatives of polynomial functions. Differ. Geom.-Dyn. Syst. 2013, 15, 93–104. [Google Scholar]
- Cioc, R. Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: Measurement of path and acceleration. Fract. Calc. Appl. Anal. 2016, 19, 161–172. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Economic interpretation of fractional derivatives. Prog. Fract. Differ. Appl. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Rehman, H.U.; Darus, M.; Salah, J. A note on Caputo’s derivative operator interpretation in economy. J. Appl. Math. 2018, 2018, 1260240. [Google Scholar] [CrossRef]
- Stanislavsky, A.A. Probability interpretation of the integral of fractional order. Theor. Math. Phys. 2004, 138, 418–431. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A. A probabilistic interpretation of the fractional-order differentiation. Fract. Calc. Appl. Anal. 2009, 6, 73–80. [Google Scholar]
- Tenreiro Machado, J.A. Fractional derivatives: Probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3492–3497. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Tarasova, S.S. Probabilistic interpretation of Kober fractional integral of non-integer order. Prog. Fract. Differ. Appl. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional and integer derivatives with continuously distributed lag. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 125–169. [Google Scholar] [CrossRef]
- Tarasov, V.E. Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundam. Informaticae 2017, 151, 431–442. [Google Scholar] [CrossRef]
- Tarasov, V.E. Entropy interpretation of Hadamard type fractional operators: Fractional cumulative entropy. Entropy 2022, 24, 1852. [Google Scholar] [CrossRef] [PubMed]
- Luchko, Y. Fractional derivatives and the fundamental theorem of fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 939–966. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Factional Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Sonine, N. On the generalization of an Abel formula. (Sur la generalisation d’une formule d’Abel). Acta Math. 1884, 4, 171–176. (In French) [Google Scholar] [CrossRef]
- Sonin, N.Y. On the generalization of an Abel formula. In Investigations of Cylinder Functions and Special Polynomials; GTTI: Moscow, Russia, 1954; pp. 148–154. Available online: https://ur.zlibcdn2.com/book/2157173/2a8410 (accessed on 22 February 2023).
- Rogosin, S.; Dubatovskaya, M. Fractional calculus in Russia at the end of XIX century. Mathematics 2021, 9, 1736. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus, evolution equations and renewal processes. Integral Equations Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Cardoso, R.P. Sonine integral equations of the first kind in Ly(0;b). Fract. Calc. Appl. Anal. 2003, 6, 235–258. [Google Scholar]
- Toaldo, B. Convolution-type derivatives, hitting times of subordinators and time-changed C0-semigroups. Potential Anal. 2015, 42, 115–140. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 675–695. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G. Fractional kinetic hierarchies and intermittency. Kinetic and related models. Am. Inst. Math. Sci. 2017, 10, 725–740. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G. Growth equation of the general fractional calculus. Mathematics 2019, 7, 615. [Google Scholar] [CrossRef] [Green Version]
- Kondratiev, Y.; da Silva, J. Cesaro limits for fractional dynamics. Fractal Fract. 2021, 5, 133. [Google Scholar] [CrossRef]
- Sin, C.-S. Well-posedness of general Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 2018, 21, 819–832. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus. Chapter 5. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Y., Machado, J.A.T., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Kochubei, A.N. Equations with general fractional time derivatives. Cauchy problem. Chapter 11. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Machado, J.A.T., Ed.; De Gruyter: Berlin, Germany, 2019; pp. 223–234. [Google Scholar]
- Kinash, N.; Janno, J. Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 2019, 24, 236–262. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. An inverse problem for a generalized fractional derivative with an application in reconstruction of time- and space- dependent sources in fractional diffusion and wave equations. Mathematics 2019, 7, 1138. [Google Scholar] [CrossRef] [Green Version]
- Ascione, G. Abstract Cauchy problems for the generalized fractional calculus. Nonlinear Anal. 2021, 209, 112339. [Google Scholar] [CrossRef]
- Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef] [Green Version]
- Bazhlekova, E. Estimates for a general fractional relaxation equation and application to an inverse source problem. Math. Methods Appl. Sci. 2018, 41, 9018–9026. [Google Scholar] [CrossRef] [Green Version]
- Bazhlekova, E.; Bazhlekov, I. Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. J. Comput. Appl. Math. 2021, 386, 113213. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S. Zener model with deneral fractional calculus: Thermodynamical restrictions. Fractal Fract. 2022, 6, 617. [Google Scholar] [CrossRef]
- Miskovic-Stankovic, V.; Janev, M.; Atanackovic, T.M. Two compartmental fractional derivative model with general fractional derivative. J. Pharmacokinet. Pharmacodyn. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Al-Refai, M.; Fernandez, A. Generalising the fractional calculus with Sonine kernels via conjugations. J. Comput. Appl. Math. 2023, 427, 115159. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives of arbitrary order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Luchko, Y. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Luchko, Y. Special functions of fractional calculus in the form of convolution series and their applications. Mathematics 2021, 9, 2132. [Google Scholar] [CrossRef]
- Luchko, Y. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 2022, 25, 207–228. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Luchko, Y. The 1st level general fractional derivatives and some of their properties. J. Math. Sci. 2022. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Hanna, L.A.M.; Luchko, Y. Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 2022, 10, 1590. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equations 2022, 319, 312–324. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. The general fractional integrals and derivatives on a finite interval. Mathematics 2023, 11, 1031. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional vector calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional dynamics. Mathematics 2021, 9, 1464. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-Markovian quantum dynamics. Entropy 2021, 23, 1006. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-local continuum mechanics: Derivation of balance Equations. Mathematics 2022, 10, 1427. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-local electrodynamics: Equations and non-local effects. Ann. Phys. 2022, 445, 169082. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal classical theory of gravity: Massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus 2022, 137, 1336. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 848. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Diethelm, K.; Kiryakova, V.; Luchko, Y.; Tenreiro Machado, J.A.; Tarasov, V.E. Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Riesz, M. L’integrale de Riemann-Liouville et le probleme de Cauchy pour l’equation des ondes. Bull. Soc. Math. Fr. 1939, 67, 153–170. Available online: https://eudml.org/doc/86724 (accessed on 22 February 2023). [CrossRef] [Green Version]
- Riesz, M. L’intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 1949, 81, 1–222. (In French) [Google Scholar] [CrossRef]
- Prado, H.; Rivero, M.; Trujillo, J.J.; Velasco, M.P. New results from old investigation: A note on fractional m-dimensional differential operators. The fractional Laplacian. Fract. Calc. Appl. Anal. 2015, 18, 290–306. [Google Scholar] [CrossRef]
- Lizorkin, P.I. Characterization of the spaces Lpr(Rn) in terms of difference singular integrals. Mat. Sb. 1970, 81, 79–91. (In Russian) [Google Scholar]
- Feller, W. On a generalization of Marcel Riesz potentials and the semi-groups generated by them. In Meddelanden Lunds Universitetes Matematiska Seminarium (Comm. Sem. Mathem. Universite de Lund); Tome Suppl. dedie a M. Riesz; C. W. K. Gleerup: Lund, Sweden, 1952; pp. 73–81. [Google Scholar]
- Samko, S. Convolution and potential type operators in Lp(x). Integral Transform. Spec. Funct. 1998, 7, 261–284. [Google Scholar] [CrossRef]
- Samko, S. Convolution type operators in Lp(x). Integral Transform. Spec. Funct. 1998, 7, 123–144. [Google Scholar] [CrossRef]
- Samko, S. On local summability of Riesz potentials in the case Reα>0. Anal. Math. 1999, 25, 205–210. [Google Scholar] [CrossRef]
- Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators. Integral Transform. Spec. Funct. 2005, 16, 461–482. [Google Scholar] [CrossRef]
- Samko, S. A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1998, 1, 225–245. [Google Scholar]
- Rafeiro, H.; Samko, S. Approximative method for the inversion of the Riesz potential operator in variable Lebesgue spaces. Fract. Calc. Appl. Anal. 2008, 11, 269–280. [Google Scholar]
- Rafeiro, H.; Samko, S. On multidimensional analogue of Marchaud formula for fractional Riesz-type derivatives in domains in Rn. Fract. Calc. Appl. Anal. 2005, 8, 393–401. [Google Scholar]
- Almeida, A.; Samko, S. Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Funct. Spaces Appl. 2006, 4, 113–144. [Google Scholar] [CrossRef]
- Samko, S.G. On spaces of Riesz potentials. Math. USSR-Izv. 1976, 10, 1089–1117. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Laleg-Kirati, T.-M.; Tenreiro Machado, J.A. Riesz potential versus fractional Laplacian. J. Stat. Mech. Theory Exp. 2014, 2014, 09032. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, R.A.; Trione, S.E. The inversion of Marcel Riesz ultrahyperbolic causal operators. Appl. Math. Lett. 1999, 12, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, R.A.; Trione, S.E. Some properties of the generalized causal and anticausal Riesz potentials. Appl. Math. Lett. 2000, 13, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Toward lattice fractional vector calculus. J. Phys. A 2014, 47, 355204. [Google Scholar] [CrossRef]
- Tarasov, V.E. Lattice fractional calculus. Appl. Math. Comput. 2015, 257, 12–33. [Google Scholar] [CrossRef]
- Tarasov, V.E. United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 2016, 19, 625–664. [Google Scholar] [CrossRef]
- Darve, E.; D’Elia, M.; Garrappa, R.; Giusti, A.; Rubio, N.L. On the fractional Laplacian of variable order. Fract. Calc. Appl. Anal. 2022, 25, 15–28. [Google Scholar] [CrossRef]
- Giusti, A.; Garrappa, R.; Vachon, G. On the Kuzmin model in fractional Newtonian gravity. Eur. Phys. J. Plus 2020, 135, 1–12. [Google Scholar] [CrossRef]
- Sitnik, S.M.; Fedorov, V.E.; Polovinkina, M.V.; Polovinkin, I.P. On recovery of the singular differential Laplace-Bessel operator from the Fourier-Bessel transform. Mathematics 2023, 11, 1103. [Google Scholar] [CrossRef]
- Tarasov, V.E. Lattice model of fractional gradient and integral elasticity: Long-range interaction of Grunwald-Letnikov-Riesz type. Mech. Mater. 2014, 70, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional quantum field theory: From lattice to continuum. Adv. High Energy Phys. 2014, 2014, 957863. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional-order difference equations for physical lattices and some applications. J. Math. Phys. 2015, 56, 103506. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. Meccanica 2016, 51, 125–138. [Google Scholar] [CrossRef]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Stinga, P.R. User’s guide to the fractional Laplacian and the method of semigroups. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2019; pp. 235–265. [Google Scholar] [CrossRef] [Green Version]
- Kwasnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 2017, 20, 7–51. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.M.; Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces; Princeton University Press: Princeton, NJ, USA, 1971; ISBN 069108078X. [Google Scholar]
- Young, W.H. On the multiplication of successions of Fourier constants. Proc. R. Soc. A 1912, 87, 331–339. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 2016, 37, 31–61. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discretization of fractional Laplacian. Comput. Math. Appl. 2017, 73, 855–863. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discrete analogs of derivatives of integer orders: Differences as infinite series. J. Math. 2015, 2015, 134842. [Google Scholar] [CrossRef]
- Mickens, R.E. Difference equation models of differential equations. Math. Comput. Model. 1988, 11, 528–530. [Google Scholar] [CrossRef]
- Mickens, R.E. Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math. 1999, 110, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Mickens, R.E. Nonstandard finite difference schemes for differential equations. J. Differ. Equations Appl. 2002, 8, 823–847. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard Finite Difference Models of Differential Equations; World Scientific: Singapore, 1994. [Google Scholar] [CrossRef] [Green Version]
- Mickens, R.E. (Ed.) Applications of Nonstandard Finite Difference Schemes; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Mickens, R.E. (Ed.) Advances in the Applications of Nonstandard Finite Difference Schemes; World Scientific: Singapore, 2005. [Google Scholar] [CrossRef]
- Ongun, M.Y.; Arslan, D.; Garrappa, R. Nonstandard finite difference schemes for a fractional-order Brusselator system. Adv. Differ. Equations 2013, 2013, 102. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A. MOND-like fractional Laplacian theory. Phys. Rev. D. 2020, 101, 124029. [Google Scholar] [CrossRef]
- Calcagni, G. Classical and quantum gravity with fractional operators. Class. Quantum Gravity 2021, 38, 165005. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Trujillo, J.J. Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 2014, 334, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Power-law spatial dispersion from fractional Liouville equation. Phys. Plasmas 2013, 20, 102110. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional electrodynamics with spatial dispersion. In Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin, Germany, 2019; pp. 25–52. [Google Scholar] [CrossRef]
- Rukhadze, A.A.; Silin, V.P. Electrodynamics of media with spatial dispersion. Sov. Phys. Uspekhi 1961, 4, 459–484. [Google Scholar] [CrossRef]
- Alexandrov, A.F.; Rukhadze, A.A. Lectures on Electrodynamics of Plasma-Like Media, 2. Nonequilibrium Environment; Moscow State University Press: Moscow, Russia, 2002. [Google Scholar]
- Kuzelev, M.V.; Rukhadze, A.A. Methods of Waves Theory in Dispersive Media; World Scientific: Singapore, 2009. [Google Scholar]
- Agranovich, V.M.; Ginzburg, V.L. Crystal Optics with Spatial Dispersion and Excitons: An Account of Spatial Dispersion; Springer: Berlin, Germany, 1984; 441p. [Google Scholar]
- Agranovich, V.M.; Ginzburg, V.L. Spatial Dispersion in Crystal Optics and the Theory of Excitons; John Wiley and Sons: Hoboken, NJ, USA, 1966. [Google Scholar]
- Agranovich, V.M.; Ginzburg, V.L. Crystal Optics with Spatial Dispersion and Theory of Exciton, 1st ed.; Nauka: Moscow, Russia, 1965. [Google Scholar]
- Tarasov, V.E. Lattice model with power-law spatial dispersion for fractional elasticity. Cent. Eur. J. Phys. (Open Phys.) 2013, 11, 1580–1588. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional gradient elasticity from spatial dispersion law. ISRN Condens. Matter Phys. 2013, 2014, 794097. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Aifantis, E.C. Non-standard extensions of gradient elasticity: Fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Aifantis, E.C. On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mech. 2019, 230, 2043–2070. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Zaslavsky, G.M. Fractional dynamics of coupled oscillators with long-range interaction. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 023110. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E.; Zaslavsky, G.M. Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractional Schrodinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskin, N. Fractional Quantum Mechanics; World Scientific: Singapore, 2018; 360p. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Fractional Schrodinger equation for a particle moving in a potential well. J. Math. Phys. 2013, 54, 012111. [Google Scholar] [CrossRef]
- Al-Saqabi, B.; Boyadjiev, L.; Luchko, Y. Comments on employing the Riesz-Feller derivative in the Schrodinger equation. Eur. Phys. J. Spec. Top. 2013, 222, 1779–1794. [Google Scholar] [CrossRef]
- Jeng, M.; Xu, S.-L.-Y.; Hawkins, E.; Schwarz, J.M. On the nonlocality of the fractional Schrodinger equation. J. Math. Phys. 2010, 51, 062102. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. General Fractional Calculus in Multi-Dimensional Space: Riesz Form. Mathematics 2023, 11, 1651. https://doi.org/10.3390/math11071651
Tarasov VE. General Fractional Calculus in Multi-Dimensional Space: Riesz Form. Mathematics. 2023; 11(7):1651. https://doi.org/10.3390/math11071651
Chicago/Turabian StyleTarasov, Vasily E. 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form" Mathematics 11, no. 7: 1651. https://doi.org/10.3390/math11071651
APA StyleTarasov, V. E. (2023). General Fractional Calculus in Multi-Dimensional Space: Riesz Form. Mathematics, 11(7), 1651. https://doi.org/10.3390/math11071651