A Review of q-Difference Equations for Al-Salam–Carlitz Polynomials and Applications to U(n + 1) Type Generating Functions and Ramanujan’s Integrals
Abstract
:1. Introduction
- (I.1)
- If the function satisfies the q-difference equationthen the function has the following form:
- (I.2)
- If the function satisfies the q-differencethen the function has the following form:
- (A)
- The function f can be expanded in terms of if and only if f satisfies the functional equation
- (B)
- The function f can be expanded in terms of if and only if f satisfies the functional equation
2. Proof of Main Results
3. Some Identities of -Exponential Operators Involving the New -Polynomials
4. Generating Functions for q-Polynomials
5. Bilinear Generating Functions for and
6. A Transformational Identity from q-Difference Equations
7. -Type Generating Functions for Generalized Al-Salam–Carlitz Polynomials
8. A Generalization of Ramanujan’s Integrals
9. Two Extensions of the Andrews–Askey Integral
10. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Taylor, J. Several complex variables with connections to algebraic geometry and lie groups. In Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2002; Volume 46. [Google Scholar]
- Srivastava, H.M.; Karlon, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: Ultimo, NS, Australia; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, QL, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables I. IMA J. Appl. Math. 1983, 30, 315–323. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables II. IMA J. Appl. Math. 1984, 33, 205–209. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmenting for basic hypergeometric series, I. In Mathematical Essays in Honor of Gian-Carlo Roto; Sagan, B.E., Stanley, R.P., Eds.; Birkauser: Basel, Switzerland, 1998; pp. 111–129. [Google Scholar]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmenting for basic hypergeometric series, II. J. Combin. Theory. Ser. A 1997, 80, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. The theory of the umbral calculus I. J. Math. Anal. Appl. 1982, 87, 58–115. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. Two q-difference equations and q-operator identities. J. Differ. Equ. Appl. 2010, 16, 1293–1307. [Google Scholar] [CrossRef]
- Liu, Z.-G. An extension of the non-terminating 6ψ5 summation and the Askey-wilson polynomials. J. Differ. Equ. Appl. 2011, 17, 1401–1411. [Google Scholar] [CrossRef]
- Fang, J.-P. Remarks on homogeneous Al-Salam and Carlitz polynomials. J. Math. 2014, 2014, 523013. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.-P. q-Difference equation and q-polynomials. Appl. Math. Comput. 2014, 248, 550–561. [Google Scholar] [CrossRef]
- Fang, J.-P. Remarks on a generalized q-difference equation. J. Differ. Equ. Appl. 2015, 21, 934–953. [Google Scholar] [CrossRef]
- Jia, Z. Two new q-exponential operator identities and their applications. J. Math. Anal. Appl. 2014, 419, 329–338. [Google Scholar] [CrossRef]
- Liu, Z.-G. Some operator identities and q-series transformation formulas. Discrete Math. 2003, 265, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G.; Zeng, J. Two expansion formulas involving the Rogers–Szegö polynomials with applications. Int. J. Number Theory 2015, 11, 507–525. [Google Scholar] [CrossRef]
- Carlittz, L. Generating functions for certain q-orthogonal polynomials. Collect. Math. 1972, 23, 91–104. [Google Scholar]
- Liu, Z.-G. On the q-partial differential equations and q-series. In The Legacy of Srinivasa Ramanujan; Ramanujan Mathematical Society Lecture Note Series; Ramanujan Mathematical Society: Mysore, India, 2013; Volume 20, pp. 213–250. [Google Scholar]
- Aslan, H.; Ismail, M.E.H. A q-translation approach to Liu’s calculus. Ann. Comb. 2019, 23, 465–488. [Google Scholar] [CrossRef]
- Arjika, S. q-Difference equation for homogeneous q-difference operators and their applications. J. Differ. Equ. Appl. 2020, 26, 987–999. [Google Scholar] [CrossRef]
- Arreche, C.E.; Zhang, Y. Computing differential Galois groups of second-order linear q-difference equations. Adv. Appl. Math. 2022, 132, 102273. [Google Scholar] [CrossRef]
- Cao, J.; Cai, T. q-Difference equations of moment integrals for transformational identities and generating functions. J. Differ. Equa. Appl. 2012, 20, 1592–1608. [Google Scholar] [CrossRef]
- Cao, J.; Niu, D.-W. A note on q-difference equations for Cigler’s polynomials. J. Differ. Equ. Appl. 2016, 22, 1880–1892. [Google Scholar] [CrossRef]
- Cao, J. A note on q-difference equations for Ramanujan’s integrals. Ramanujan J. 2019, 48, 63–73. [Google Scholar] [CrossRef]
- Cao, J.; Xu, B.; Arjika, S. A note on generalized q-difference equations for general Al-Salam–Carlitz polynomials. Adv. Differ. Equ. 2020, 2020, 668. [Google Scholar] [CrossRef]
- Cao, J.; Srivastava, H.M.; Zhou, H.-L.; Arjika, S. Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients. Mathematics 2022, 10, 556. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Roy. Soc. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Roques, J. On the algebraic and analytic q-de Rham complexes attached to q-difference equations. Trans. Amer. Math. Soc. 2022, 375, 1461–1507. [Google Scholar]
- Al-Salam, W.A.; Carlitz, L. Some orthogonal q-polynomials. Math. Nachr. 1965, 30, 47–61. [Google Scholar] [CrossRef]
- Wang, M. An identity from the Al-Salam–Carlitz polynomials. Math. Aeterna 2012, 2, 185–187. [Google Scholar]
- Wang, M. A transformation for the Al-Salam–Carlitz polynomials. ARS Combin. 2013, 112, 411–418. [Google Scholar]
- Askey, R.; Suslov, S.K. The q-harmonic oscillator and the Al-Salam and Carlitz polynomials. Lett. Math. Phys. 1993, 29, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Kim, D. On combinatorics of Al-Salam Carlitz polynomials. Eur. J. Combin. 1997, 18, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Wang, M. q-Integral representation of the Al-Salam–Carlitz polynomials. Appl. Math. Lett. 2009, 22, 943–945. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.C.; Saad, H.L.; Sun, L.H. An operator approach to the Al-Salam–Carlitz polynomials. J. Math. Phys. 2010, 51, 043502. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Arjika, S. Generating functions for some families of the generalized Al-Salam–Carlitz q-polynomials. Adv. Differ. Equ. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Cao, J. A Note on q-Integrals and Certain Generating Functions. Stud. Appl. Math. 2013, 131, 105–118. [Google Scholar] [CrossRef]
- Groenevelt, W. Orthogonality relations for Al-Salam–Carlitz polynomials of type II. J. Approx. Theory 2015, 195, 89–108. [Google Scholar] [CrossRef] [Green Version]
- Milne, S.C. Balanced 3ϕ2 summation theorenss for U(n) basic hypergeometric series. Adv. Math. 1997, 131, 93–187. [Google Scholar] [CrossRef] [Green Version]
- Ohlmann, G. Computation of Al-Salam Carlitz and Askey–Wilson moments using Motzkin paths. Electron. J. Combin. 2021, 28, P3-1. [Google Scholar] [CrossRef]
- Cao, J. A note on generalized q-difference equations for q-beta and Andrews-Askey integral. J. Math. Anal. Appl. 2014, 2412, 841–851. [Google Scholar] [CrossRef]
- Saad, H.L.; Abdlhusein, M.A. New application of the Cauchy operator on the homogeneous Rogers–Szegö polynomials. Ramanujan J. 2021, 56, 347–367. [Google Scholar] [CrossRef]
- Jia, Z.; Khan, B.; Hu, Q.; Niu, D.-W. Applications of generalized q-difference equations for general q-polynomials. Symmetry 2021, 13, 1222. [Google Scholar] [CrossRef]
- Gunning, R. Introduction to Holomorphic Functions of Several Variables. In Function Theory, Volume 1, The Wadsworth & Brooks/Cole Mathematics Series; Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, USA, 1990; p. xx+203. [Google Scholar]
- Malgrange, B. Lectures on the Theory of Functions of Several Complex Variables; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Zhang, Z.-Z.; Wang, J. Two operator identities and their applications to terminating basic hypergeometric series and q-integrals. J. Math. Anal. Appl. 2005, 312, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.C.; Fu, A.M.; Zhang, B. The homogeneous q-difference operator. Adv. Appl. Math. 2003, 31, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. q-Difference equation and the Cauchy operator identities. J. Math. Anal. Appl. 2009, 359, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Askey, R. Two integrals of Ramanujan. Proc. Am. Math. Soc. 1982, 85, 192–194. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R. Another q-extension of the beta function. Proc. Amer. Math. Soc. 1981, 81, 97–100. [Google Scholar] [CrossRef]
- Wituła, R.; Hetmaniok, E.; Słota, D.; Pleszczyński, M. δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials. Math. Slovaca 2017, 67, 51–70. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Pleszczyński, M.; Słota, D.; Wituła, R. On similarities between exponential polynomials and Hermite polynomials. J. Appl. Math. Comput. Mech. 2013, 12, 93–104. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Lorenc, P.; Pleszczyński, M.; Wituła, R. Iterated integrals of polynomials. Appl. Math. Comput. 2014, 249, 389–398. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Słota, D.; Pleszczyński, M.; Marcin, S.; Wituła, R. Hermite-Bell’s polynomials for negative powers. In Proceedings of the International Conference “Applications of Electromagnetics in Modern Engineering and Medicine” (PTZE), Janow Podlaski, Poland, 9–12 June 2019; pp. 56–59. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Huang, J.-Y.; Fadel, M.; Arjika, S. A Review of q-Difference Equations for Al-Salam–Carlitz Polynomials and Applications to U(n + 1) Type Generating Functions and Ramanujan’s Integrals. Mathematics 2023, 11, 1655. https://doi.org/10.3390/math11071655
Cao J, Huang J-Y, Fadel M, Arjika S. A Review of q-Difference Equations for Al-Salam–Carlitz Polynomials and Applications to U(n + 1) Type Generating Functions and Ramanujan’s Integrals. Mathematics. 2023; 11(7):1655. https://doi.org/10.3390/math11071655
Chicago/Turabian StyleCao, Jian, Jin-Yan Huang, Mohammed Fadel, and Sama Arjika. 2023. "A Review of q-Difference Equations for Al-Salam–Carlitz Polynomials and Applications to U(n + 1) Type Generating Functions and Ramanujan’s Integrals" Mathematics 11, no. 7: 1655. https://doi.org/10.3390/math11071655
APA StyleCao, J., Huang, J. -Y., Fadel, M., & Arjika, S. (2023). A Review of q-Difference Equations for Al-Salam–Carlitz Polynomials and Applications to U(n + 1) Type Generating Functions and Ramanujan’s Integrals. Mathematics, 11(7), 1655. https://doi.org/10.3390/math11071655