W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line
Abstract
:1. Introduction
2. Model Description
3. Exact Traveling Wave in NETL
3.1. Jacobi Elliptic Function Solutions (JEFs)
- If and ,
- If and , gives
- If and , gives
- If and , gives
3.2. Soliton Solutions
- .and Equation (5) reads
- Result 1:
- Result 2:
- Case 1: and , and a bright and singular soliton is obtained
- Case 2: and , and we obtained periodic and singular solutions
- Result 3:
- Case 4: If and we obtain trigonometric function solutions in the form
- Case 5: If we obtain dark, singular and combined soliton solutions in the structure as
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sekulic, D.L.; Satoric, M.V.; Zivanov, M.B.; Bajic, J.S. Soliton-like pulses along electrical nonlinear transmission line. Elecron. Electr. Eng. 2012, 121, 53. [Google Scholar] [CrossRef] [Green Version]
- Pelap, F.B.; Faye, M. Soliton-like excitations in the one-dimensional electrical transmission line. Nonlinear Oscil. 2005, 8, 513–525. [Google Scholar] [CrossRef]
- Marquié, P.; Bibault, J.M.; Remoissenet, M. Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 1995, 51, 6127. [Google Scholar] [CrossRef] [PubMed]
- Kenmogne, F.; Yemélxex, D. Bright and peaklike pulse solitary waves and analogy with modulational instability in an extended nonlinear Schrödinger equation. Phys. Rev. E 2013, 88, 207. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.E. Electrical transmission lines as models for soliton propagation in materials: Elementary aspects of video solitons. AT Bell Lab. Tech. J. 1984, 63, 901. [Google Scholar] [CrossRef]
- Yazaki, T.; Fukushima, K. Experimental studies of potential problems in quantum mechan-ics using nonlinear transmission line. Am. J. Phys. 1985, 53, 1186. [Google Scholar] [CrossRef]
- Nejoh, Y. Envelope soliton of the electron plasma wave in a nonlinear transmission line. Phys. Scr. 1985, 31, 415. [Google Scholar] [CrossRef]
- Paulus, P.; Wedding, B.; Gasch, A.; Jager, D. Bistability and solitons observed in a nonlinear ring resonator. Phys. Lett. A 1984, 102A, 89. [Google Scholar] [CrossRef]
- Hirota, R.; Suzuki, K. Theoretical and experimental studies of lattice solitons in nonlinear lumped networks. Proc. IEEE 1973, 13, 1483–1491. [Google Scholar] [CrossRef]
- Hirota, R.; Suzuki, K. Field Distribution in a Magnetoplasma-Loaded Waveguide at Room Temperature. Trans. IEEE 1970, 18, 915–916. [Google Scholar] [CrossRef]
- Freeman, R.H.; Karbowiak, A.E. An investigation of nonlinear transmission lines and shock waves. J. Phys. D Appl. Phys. 1977, 10, 633. [Google Scholar] [CrossRef]
- Watanabe, S. Soliton and generation of tail in nonlinear dispersive media with weak dissi-pation. J. Phys. Soc. Jpn. 1978, 45, 276. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Kakutani, T. Second order KDV soliton on a nonlinear transmission line. J. Phys. Soc. Jpn. 1980, 49, 2072. [Google Scholar] [CrossRef]
- Nogushi, A. Solitons in a Nonlinear Inhomogeneous Transmission Line. Electron. Commun. Jpn. 1974, 57, 9. [Google Scholar]
- Jager, D.; Tegude, F.J. Nonlinear wave propagation along periodic-loaded transmission line. Appl. Phys. 1978, 15, 393. [Google Scholar] [CrossRef]
- Fukushima, K.; Wadati, M.; Kotera, T.; Sawada, K.; Narahara, Y. Experimental and theo-retical study of the recurrence phenomena in nonlinear transmission line. J. Phys. Soc. Jpn. 1980, 48, 1029. [Google Scholar] [CrossRef]
- Nagashina, H.; Amagishi, Y. Experiment on Solitons in the Dissipative Toda Lattice Using Nonlinear Transmission Line. J. Phys. Soc. Jpn. 1978, 45, 680. [Google Scholar] [CrossRef]
- Kofané, T.C.; Michaux, B.; Remoissenet, M. Theoretical and experimental studies of diatomic lattice solitons using an electrical transmission line. J. Phys. C Solid Stat. Phys. 1988, 21, 1395. [Google Scholar] [CrossRef]
- Benson, F.A.; Last, J.D. Nonlinear Transmission Line Harmonic Generator. Proc. IEEE 1965, 112, 635. [Google Scholar] [CrossRef]
- Yagi, T.; Noguchi, A. Gyromagnetic nonlinear element and its application as a pulse-shaping transmission line. Proc. Lett. 1977, 13, 683. [Google Scholar] [CrossRef]
- Tan, M.; Su, C.; Anklam, W. 7× electrical pulse compression an inhomogeneous nonlinear transmission line. Electron. Lett. 1988, 24, 213. [Google Scholar] [CrossRef]
- Abdoulkary, S.; Mohamadou, A.; Beda, T. Exact traveling discrete kink-soliton solutions for the discrete nonlinear electrical transmission lines. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3525. [Google Scholar] [CrossRef]
- Kegne, E. Nonlinear wave transmission in a two-dimensional nonlinear electric transmis-sion network with dissipative elements. Chaos Solitons Fractals 2022, 164, 112637. [Google Scholar] [CrossRef]
- Djelah, G.; Ndzana, F.I.I.; Abdoulkary, S.; Mohamadou, A. First and second order rogue waves dynamics in a nonlinear electrical transmission line with the next nearest neighbor couplings. Chaos Solitons Fractals 2023, 167, 113087. [Google Scholar] [CrossRef]
- Zhang, L.-H. Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 2009, 208, 144–155. [Google Scholar] [CrossRef]
- Fermi, E.; Pasta, J.; Ulam, S. Collected papers of Enrico Fermi II; University of Chicago Press: Chicago, IL, USA, 1965. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 2nd ed.; Academic: New York, NY, USA, 1995. [Google Scholar]
- Hirota, R.; Suzuki, K. Studies on lattice solitons by using electrical networks. J. Phys. Soc. Jpn. 1970, 28, 1366. [Google Scholar] [CrossRef]
- Ren, Z.; Ying, C.; Fan, C.; Wu, Q. The Generation Mechanism of Airy-Bessel Wave Packets in Free Space. Chin. Phys. Lett. 2012, 29, 124209. [Google Scholar] [CrossRef]
- Zhong, W.P.; Belić, M.R.; Huang, T. Two-Dimensional accessible solitons in P T-symmetric potentials. Nonlinear Dyn. 2012, 70, 2027–2034. [Google Scholar] [CrossRef]
- Zhong, W.-P.; Belić, M.R. Soliton tunneling in the nonlinear Schrödinger equation with variable coefficients and an external harmonic potential. Phys. Rev. E 2010, 81, 056604. [Google Scholar] [CrossRef]
- Zhong, W.-P.; Belić, M.R.; Huang, T. Rogue wave solutions to the generalized nonline-ar Schrödinger equation with variable coefficients. Phys. Rev. E 2013, 87, 065201. [Google Scholar] [CrossRef]
- Zhong, W.-P.; Belić, M.R.; Huang, T. Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets. Phys. Rev. A 2013, 88, 033824. [Google Scholar] [CrossRef]
- Zhong, W.-P.; Belić, M.R.; Zhang, M.B.A.Y.; Huang, T. Spatiotemporal accessible sol-itons in fractional dimensions. Phys. Rev. E 2016, 94, 012216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Zhong, W.-P.; Belić, M.; Zhang, Y. Controllable optical rogue waves via non-linearity management. Opt. Express 2018, 26, 7587. [Google Scholar] [CrossRef]
- Hirota, R. Exact solution of the Korteweg-de-Vries equation for multiple collisions of soli-tons. Phys. Rev. Lett. 1971, 27, 1192–1194. [Google Scholar] [CrossRef]
- Tsigaridas, G.; Fragos, A.; Polyzos, I.; Fakis, M.; Ioannou, A.; Gianneta, V.; Persophonis, P. Evolution of near-soliton initial profiles in nonlinear wave equations through their Backlund transforms. Chaos Solitons Fractals 2005, 23, 1841–1854. [Google Scholar] [CrossRef]
- Suzo, A.A. Intertwining technique for the matrix Schrödinger equation. Phys. Lett. A 2005, 335, 88–102. [Google Scholar] [CrossRef]
- Banerjee, R.S. Painleve´ analysis of the K(m,n) equations which yield compac-tons. Phys. Scr. 1998, 57, 598–600. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Zhang, H.Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A 2001, 285, 355–362. [Google Scholar] [CrossRef]
- He, J.H. The variational iteration method for eighth-order initial-boundary value problems. Phys. Scr. 2007, 76, 680–682. [Google Scholar] [CrossRef]
- Dai, C.Q.; Wang, Y.-Y. Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method. Phys. Scr. 2008, 78, 015013–015019. [Google Scholar] [CrossRef]
- Hu, J. An algebraic method exactly solving two high-dimensional nonlinear evolution equa-tions. Chaos Solitons Fractals 2005, 23, 391–398. [Google Scholar]
- Dursun, I.; Idris, D. Solitary wave solutions of the CMKDV equation by using the quintic B-spline collocation method. Phys. Scr. 2008, 77, 065001–065008. [Google Scholar]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef] [Green Version]
- Ryabov, P.N.; Sinelshchikov, D.I.; Kochanov, M.B. Exact solutions of the Kudryash-ov-Sinelshchikov equation using the multiple (G′G)-expansion method. Appl. Math. Comput. 2011, 218, 3965–3972. [Google Scholar]
- Malwe, B.H.; Gambo, B.; Doka, S.Y.; Kofane, T.C. Soliton wave solutions for the nonlin-ear transmission line using Kudryashov method and (G′/G)-expansion method. Appl. Math. Comput. 2014, 239, 299–309. [Google Scholar]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differ-ential equation. Chaos Solitons Fractals 2005, 24, 1217–1221. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Seadawy, A.R.; Arshad, M.; Wang, J. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equa-tions and their applications. Results Phys. 2017, 7, 899–909. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Wang, J. Travelling wave solutions of generalized cou-pled Zakharov-Kuznetsov and dispersive long wave equations. Results Phys. 2016, 6, 1136–1145. [Google Scholar] [CrossRef] [Green Version]
- Tala-Tebue, E.; Tsobgni-Fozap, D.C.; Kenfack-Jiotsa, A.; Kofane, T.C. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 2009, 129, 136–146. [Google Scholar] [CrossRef]
- Gladkov, S.O.; Aung, Z. Regarding corrections to the Stokes force in the Knudsen number. Russ. Phys. J. 2021, 63, 2122–2140. [Google Scholar] [CrossRef]
- Fairbanks, A.J.; Darr, A.M.; Garner, A.L. A review of nonlinear transmission line system design. IEEE Access 2020, 8, 148606–148621. [Google Scholar] [CrossRef]
- Crawford, T.D.; Garner, A.L. Nonlinear Transmission Line Performance as a Combined Pulse Forming Line and High-Power Microwave Source as a Function of Line Impedance. Appl. Sci. 2022, 12, 10305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inc, M.; Alqahtani, R.T.; Agarwal, R.P. W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line. Mathematics 2023, 11, 1703. https://doi.org/10.3390/math11071703
Inc M, Alqahtani RT, Agarwal RP. W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line. Mathematics. 2023; 11(7):1703. https://doi.org/10.3390/math11071703
Chicago/Turabian StyleInc, Mustafa, Rubayyi T. Alqahtani, and Ravi P. Agarwal. 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line" Mathematics 11, no. 7: 1703. https://doi.org/10.3390/math11071703
APA StyleInc, M., Alqahtani, R. T., & Agarwal, R. P. (2023). W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line. Mathematics, 11(7), 1703. https://doi.org/10.3390/math11071703