An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of H+-Matrices
Abstract
:1. Introduction
2. An Improved Convergence Condition
3. Numerical Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cottle, R.W.; Pang, J.-S.; Stone, R.E. The Linear Complementarity Problem; Academic: San Diego, CA, USA, 1992. [Google Scholar]
- Eaves, B.C.; Lemke, C.E. Equivalence of LCP and PLS. Math. Oper. Res. 1981, 6, 475–484. [Google Scholar] [CrossRef]
- Ye, Y. A fully polynomial time approximation algorithm for computing a stationary point of the generalized linear complementarity problems. Math. Oper. Res. 1993, 18, 334–345. [Google Scholar] [CrossRef]
- Mangasarian, O.L.; Pang, J.S. The extended linear complementarity problem. SIAM J. Matrix Anal. Appl. 1995, 16, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Sznajder, R.; Gowda, M.S. Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 1995, 223, 695–715. [Google Scholar] [CrossRef] [Green Version]
- Ferris, M.C.; Pang, J.S. Complementarity and Variational Problems: State of the Arts; SIAM Publisher: Philadelphia, PA, USA, 1997. [Google Scholar]
- Xiu, N.; Zhang, J. A smoothing Gauss-Newton method for the generalized horizontal linear complementarity problems. J. Comput. Appl. Math. 2001, 129, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. On the convergence of a class on infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optim. 1994, 4, 208–227. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J. Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int. J. Comput. Int. Syst. 2014, 7, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Mezzadri, F.; Galligani, E. Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algor. 2020, 83, 201–219. [Google Scholar] [CrossRef]
- Bai, Z.-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 2010, 17, 917–933. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Yang, G.-H. Low-complexity tracking control of strict-feedback systems with unknown control directions. IEEE T. Automat. Contrl 2019, 64, 5175–5182. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Chen, Y.Q. Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0< α <1 case. Isa Trans. 2018, 82, 42–50. [Google Scholar] [PubMed]
- Zhang, J.-X.; Wang, Q.-G.; Ding, W. Global output-feedback prescribed performance control of nonlinear systems with unknown virtual control coefficients. IEEE T. Automat. Contrl 2022, 67, 6904–6911. [Google Scholar] [CrossRef]
- Zheng, H.; Vong, S. On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of H+-matrices. Appl. Math. Comput. 2020, 369, 124890. [Google Scholar] [CrossRef]
- Berman, A.; Plemmons, R.J. Nonnegative Matrices in the Mathematical Sciences; Academi: New York, NY, USA, 1979. [Google Scholar]
m | 100 | 200 | 300 | |
---|---|---|---|---|
NMJ | IT | 30 | 31 | 32 |
CPU | 0.0381 | 0.2120 | 0.4114 | |
RES | 6.35 × 10 | 6.61 × 10 | 5.02 × 10 | |
NMGS | IT | 19 | 20 | 20 |
CPU | 0.0314 | 0.0952 | 0.2488 | |
RES | 6.86 × 10 | 4.79 × 10 | 7.30 × 10 |
m | 100 | 200 | 300 | |
---|---|---|---|---|
NMJ | IT | 29 | 30 | 31 |
CPU | 0.0379 | 0.1553 | 0.3976 | |
RES | 9.71 × 10 | 9.05 × 10 | 6.65 × 10 | |
NMGS | IT | 18 | 19 | 19 |
CPU | 0.0243 | 0.0931 | 0.2300 | |
RES | 6.01 × 10 | 4.00 × 10 | 6.11 × 10 |
m | 100 | 200 | 300 | |
---|---|---|---|---|
NMJ | IT | 39 | 39 | 40 |
CPU | 0.0474 | 0.1930 | 0.5127 | |
RES | 6.78 × 10 | 9.78 × 10 | 8.12 × 10 | |
NMGS | IT | 20 | 20 | 21 |
CPU | 0.0283 | 0.1109 | 0.2595 | |
RES | 4.76 × 10 | 8.47 × 10 | 4.59 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, S. An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of H+-Matrices. Mathematics 2023, 11, 1842. https://doi.org/10.3390/math11081842
Li C, Wu S. An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of H+-Matrices. Mathematics. 2023; 11(8):1842. https://doi.org/10.3390/math11081842
Chicago/Turabian StyleLi, Cuixia, and Shiliang Wu. 2023. "An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of H+-Matrices" Mathematics 11, no. 8: 1842. https://doi.org/10.3390/math11081842
APA StyleLi, C., & Wu, S. (2023). An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of H+-Matrices. Mathematics, 11(8), 1842. https://doi.org/10.3390/math11081842