Next Article in Journal
MelodyDiffusion: Chord-Conditioned Melody Generation Using a Transformer-Based Diffusion Model
Next Article in Special Issue
Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials
Previous Article in Journal
On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application
Previous Article in Special Issue
The Cauchy Exponential of Linear Functionals on the Linear Space of Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Apostol-Type Hermite Degenerated Polynomials

by
Clemente Cesarano
1,*,†,
William Ramírez
1,2,*,†,
Stiven Díaz
2,†,
Adnan Shamaoon
3,† and
Waseem Ahmad Khan
4,†
1
Section of Mathematics, Universitá Telematica Internazionale Uninettuno, 00186 Rome, Italy
2
Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla 00928-1345, Colombia
3
Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
4
Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2023, 11(8), 1914; https://doi.org/10.3390/math11081914
Submission received: 15 March 2023 / Revised: 10 April 2023 / Accepted: 17 April 2023 / Published: 18 April 2023

Abstract

:
This article presents a generalization of new classes of degenerated Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite polynomials of level m. We establish some algebraic and differential properties for generalizations of new classes of degenerated Apostol–Bernoulli polynomials. These results are shown using generating function methods for Apostol–Euler and Apostol–Genocchi Hermite polynomials of level m.

1. Introduction

In this document, the customary conventions of mathematical notation are employed, where N : = { 1 , 2 , } ; N 0 : = { 0 , 1 , 2 , } ; Z refers to a set of integers; R refers to a set of real numbers; and C refers to a set of complex numbers.
There have been numerous studies in the literature that have focused on Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite polynomials, as well as their extensions and relatives. These studies include works in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. In recent years, several researchers have explored degraded versions of well-known polynomials, such as Bernoulli, Euler, falling factorial, and Bell polynomials, by utilizing generating functions, umbral calculus, and p-adic integrals. Examples of such studies can be found in [16,17,18].
The generalization of two-variable Hermite polynomials introduced by Kampé de Fériet is given by [19]:
H ω ( ξ , η ) = ω ! ν = 0 [ ω 2 ] η ν ξ ω 2 ν ν ! ( ω 2 ν ) ! .
It is to be noted that [20]
H ω ( 2 ξ , 1 ) = H ω ( ξ ) .
These polynomials satisfy the following generating equation:
e ξ τ + η τ 2 = ω = 0 H ω ( ξ , η ) τ ω ω ! .
Two-variable degenerate Hermite polynomials H n ( ξ , η ; μ ) ([21], p. 65) are defined by means of the generating function
( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H ω ( ξ , η ; μ ) τ ω ω ! .
We note that
lim μ 0 H ω ( ξ , η ; μ ) = H ω ( ξ , η ) .
The first and second kind of Stirling numbers are given, respectively, by (see [22]):
1 ν ! ln ( 1 + τ ) ν = ω = ν S ( ω , ν ) τ ω ω !
and
1 ν ! ( e τ 1 ) ν = ω = ν S ( ω , ν ) τ ω ω ! .
The generalized falling factorial ( ξ | μ ) ω with increment μ is defined by (see [18], Definition 2.3):
( ξ | μ ) ω = ν = 0 ω 1 ( ξ μ ν ) ,
for positive integer ω , with the convention ( ξ | μ ) 0 = 1 . Furthermore,
( ξ | μ ) ω = ν = 0 ω S ( ω , ν ) μ ω ν ξ ν .
From the Binomial Theorem, we have
( 1 + μ τ ) ξ μ = ω = 0 ( ξ | m u ) ω τ ω ω ! .
Khan [14] introduced degenerate Hermite–Bernoulli polynomials of the second kind, defined by
log ( 1 + μ τ ) 1 μ ( 1 + μ τ ) 1 μ 1 ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H B ω ( ξ , η ; μ ) τ ω ω ! .
For λ , u C , and α N , with u 1 , the generalized degenerate Apostol-type Frobenius Euler–Hermite polynomials of order α are given by a generating function (see [15], p. 569):
1 u λ ( 1 + μ τ ) 1 μ u α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H h ω ( ξ , η ; μ ; λ ; u ) τ ω ω ! .
Taking u = 1 and α = 1 in (3), the degenerate Hermite–Euler polynomials are obtained (see [7], p. 3, Equation (17)):
2 λ ( 1 + μ τ ) 1 μ + 1 ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H E ω ( ξ , η ; μ ; λ ) τ ω ω ! .
Clemente et al. [23] introduced and studied new families of Apostol-type degenerated polynomials by means of the following generating functions:
τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ = ω = 0 B ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! ,
2 m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ = ω = 0 E ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω !
and
( 2 τ ) m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ = ω = 0 G ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω !
where,
σ ( λ ; a , b ; τ ) = λ ( 1 + μ τ ) 1 μ l = 0 m 1 ( τ log b ) l l ! 1
and
ψ ( λ ; μ , b ; τ ) = λ ( 1 + μ τ ) 1 μ + l = 0 m 1 ( τ log b ) l l ! 1 .
If ξ = 0 , in (4)–(6), we obtain the Apostol-type degenerated numbers of order α and level m:
τ m α [ σ ( λ ; μ , b ; τ ) ] α = ω = 0 B ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! ,
2 m α [ ψ ( λ ; μ , b ; τ ) ] α = ω = 0 E ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! ,
( 2 τ ) m α [ ψ ( λ ; μ , b ; τ ) ] α = ω = 0 G ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! .
The past few years have seen significant advancements in the generalizations of special functions used in mathematical physics. These developments provide an analytical foundation for many exact solutions to problems in mathematical physics and have practical applications in various fields. One important area of development is the introduction of one- and double-variable special functions, which have been recognized for their significance in both pure mathematical and applied contexts. Multi-index and multi-variable special functions are also necessary for solving problems in several branches of mathematics, such as partial differential equations and abstract group theory. Hermite polynomials, developed by Hermite [24,25,26,27], are an example of such special functions, which are important in combinatorics, numerical analysis, and physics. They are associated with the quantum harmonic oscillator and are utilized in solving the Schrödinger equation for the oscillator. This article aims to introduce new families of Hermite–Apostol-type degenerated polynomials. Some algebraic properties and relations for these polynomials are derived. These results extend certain relations and identities of the related polynomials.

2. Generalizations of New Classes of Degenerated Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite Polynomials of Level m

In this section, based on (2) and (4)–(6), we define new families of Hermite–Apostol-type degenerated polynomials.
Definition 1.
For arbitrary real or complex parameter α and for μ , b R + , the generalizations degenerate the Apostol–Bernoulli Hermite polynomials H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) , the generalizations degenerate Apostol–Euler Hermite polynomials H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) , and the generalizations degenerate Apostol–Genocchi Hermite polynomials H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) , m N , λ C of order α and level m, are defined, in a suitable neighborhood of t = 0 , by means of the generating functions:
τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + a τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ,
2 m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω !
and
( 2 τ ) m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ,
where
σ ( λ ; μ , b ; τ ) = λ ( 1 + μ τ ) 1 μ l = 0 m 1 ( τ log b ) l l ! 1
and
ψ ( λ ; μ , b ; τ ) = λ ( 1 + μ τ ) 1 μ + l = 0 m 1 ( τ log b ) l l ! 1 .
Note that for α = 1 , λ = 1 , and b = e in (7), we have
ω = 0 lim μ 0 B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = lim μ 0 τ m λ ( 1 + μ τ ) 1 μ l = 0 m 1 ( τ log b ) l l ! α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = τ m e τ l = 0 m 1 τ l l ! e ξ τ + η τ 2 = ω = 0 B ω [ m 1 ] ( ξ , η ) τ ω ω ! ,
where B ω [ m 1 ] ( ξ ) are called generalized Hermite–Bernoulli polynomials (see [28], Equation (6)).
Analogously,
ω = 0 lim μ 0 E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 E ω [ m 1 ] ( ξ , η ) τ ω ω ! , ω = 0 lim μ 0 G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 G ω [ m 1 ] ( ξ , η ) τ ω ω ! .
where E ω [ m 1 , α ] ( ξ ) and E ω [ m 1 , α ] ( ξ ) are called generalized Hermite–Euler polynomials and generalized Hermite–Genocchi polynomials, respectively.
If ξ = 0 and η = 0 , in Definition 1, we obtain the generalizations of degenerate Apostol–Bernoulli Hermite numbers, generalizations of degenerate Apostol–Euler Hermite numbers, and generalizations of degenerate Apostol–Genocchi Hermite numbers of order α and level m.
τ m α [ σ ( λ ; μ , b ; τ ) ] α = ω = 0 H B ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! ,
2 m α [ ψ ( λ ; μ , b ; τ ) ] α = ω = 0 H E ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! ,
( 2 τ ) m α [ ψ ( λ ; μ , b ; τ ) ] α = ω = 0 H G ω [ m 1 , α ] ( ξ ; μ , b ; λ ) τ ω ω ! .
Continuation will show the standard notation for several sub-classes of polynomials, with parameters λ C , μ , b R + , order α N , and level m N (see [12,29,30,31] and the references therein).
ω -th generalized Bernoulli polynomial of level m B ω [ m 1 ] ( ξ ) : = lim μ 0 + H B ω [ m 1 , 1 ] ( ξ , 0 ; μ , e ; 1 )
ω -th generalized Euler polynomial of level m E ω ( α ) ( ξ ) : = lim μ 0 + H B ω [ m 1 , 1 ] ( ξ , 0 ; μ , e ; 1 )
ω -th generalized Genocchi polynomial of level m G ω ( α ) ( ξ ) : = lim μ 0 + H G ω [ m 1 , 1 ] ( ξ , 0 ; μ , e ; 1 )
ω -th generalized Apostol–Genocchi Hermite polynomial G ω ( α ) ( ξ ; λ ) : = lim μ 0 + H G ω [ 0 , α ] ( ξ , 0 ; μ , b ; λ )
ω -th Apostol–Bernoulli polynomial B ω ( ξ ; λ ) : = lim μ 0 + H B ω [ 0 , 1 ] ( ξ , 0 ; μ , b ; λ )
ω -th Apostol–Euler polynomial E ω ( ξ ; λ ) : = lim μ 0 + H E ω [ 0 , 1 ] ( ξ , 0 ; μ , b ; λ )
ω -th Apostol–Genocchi Hermite polynomial G ω ( ξ ; λ ) : = lim μ 0 + H G ω [ 0 , 1 ] ( ξ , 0 ; μ , b ; λ )
ω -th generalized Bernoulli polynomial B ω ( α ) ( ξ ) : = lim μ 0 + H B ω [ 0 , α ] ( ξ , 0 ; μ , b ; 1 )
ω -th generalized Euler polynomial E ω ( α ) ( ξ ) : = lim μ 0 + H E ω [ 0 , α ] ( ξ , 0 ; μ , b ; 1 )
ω -th generalized Genocchi polynomial G ω ( α ) ( ξ ) : = lim μ 0 + H G ω [ 0 , α ] ( ξ , 0 ; μ , b ; 1 )
ω -th Bernoulli polynomial B ω ( ξ ) : = lim μ 0 + H B ω [ 0 , 1 ] ( ξ , 0 ; μ , b ; 1 )
ω -th Euler polynomial E ω ( ξ ) : = lim μ 0 + H E ω [ 0 , 1 ] ( ξ , 0 ; μ , b ; 1 )
ω -th Genocchi polynomial G ω ( ξ ) : = lim μ 0 + H G ω [ 0 , 1 ] ( ξ , 0 ; μ , b ; 1 )
Theorem 1.
For m N and the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m, the following relationship holds
H B ω [ m 1 , α ] ( ξ + γ , η + w ; μ , b ; λ ) = k = 0 ω ω k H B ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H k ( γ , w ; μ ) ,
H E ω [ m 1 , α ] ( ξ + γ , η + w ; μ , b ; λ ) = k = 0 ω ω k H E ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H k ( γ , w ; μ ) ,
H G ω [ m 1 , α ] ( ξ + γ , η + w ; μ , b ; λ ) = k = 0 ω ω k H G ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H k ( γ , w ; μ ) .
Proof. 
By (7) and (2), we have
ω = 0 H B ω [ m 1 , α ] ( ξ + γ , η + w ; μ , b ; λ ) τ ω ω ! = τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ + γ μ ( 1 + μ τ 2 ) η + w μ = τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ ( 1 + μ τ ) γ μ ( 1 + μ τ 2 ) w μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ω = 0 H ω ( γ , w ; μ ) τ ω ω ! = ω = 0 ν = 0 ω ω ν H B ω ν [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H k ( γ , w ; μ ) τ ω ω ! .
In view of the above equation, we get the result (10). The proofs of (11) and (12) are given analogously. □
Theorem 2.
For m N and the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m, the argument addition theorem holds
H B ω [ m 1 , α + β ] ( ξ + η , γ + w ; μ , b ; λ ) = ν = 0 ω ω ν H B ν [ m 1 , β ] ( η , w ; μ , b ; λ ) × H B ω k [ m 1 , α ] ( ξ , γ ; μ , b ; λ ) ,
H E ω [ m 1 , α + β ] ( ξ + η , γ + w ; μ , b ; λ ) = ν = 0 ω ω ν H E ν [ m 1 , β ] ( η , w ; μ , b ; λ ) × H E ω ν [ m 1 , α ] ( ξ , γ ; μ , b ; λ ) ,
H G ω [ m 1 , α + β ] ( ξ + η , γ + w ; μ , b λ ) = ν = 0 ω ω ν H G ν [ m 1 , β ] ( η , w ; μ , b ; λ ) × H G ω ν [ m 1 , α ] ( ξ , γ ; μ , b ; λ ) .
Proof. 
Observe that,
ω = 0 H B ω [ m 1 , α + β ] ) ( ξ + η , γ + w ; μ , b ; λ ) τ ω ω ! = τ m σ ( λ ; μ , b ; τ ) α + β ( 1 + μ τ ) ξ + η μ ( 1 + μ τ 2 ) γ + w μ = ω = 0 H B ω [ m 1 , α ] ( ξ , γ ; μ , b ; λ ) τ ω ω ! × ω = 0 H B ω [ m 1 , β ] ( η , w ; μ , b ; λ ) τ ω ω ! = ω = 0 ν = 0 ω ω ν H B ω ν [ m 1 , α ] ( ξ , γ ; μ , b ; λ ) × H B ν [ m 1 , β ] ( η , w ; μ , b ; λ ) τ ω ω ! .
Therefore, by the above equation, we obtain result (13). The proofs of (14) and (15) are given analogously. □
Theorem 3.
For m N and the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m, the following relationships are obeyed:
H B ω [ m 1 , α ] ( ξ , η ; μ ; λ ) = H B ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) μ ω H B ω 1 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H E ω [ m 1 , α ] ( ξ , η ; μ ; λ ) = H E ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) μ ω H E ω 1 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H G ω [ m 1 , α ] ( ξ , η ; μ ; λ ) = H G ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) μ ω H G ω 1 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Proof. 
From generating function (8), we have
τ m σ ( λ ; μ , b ; τ ) α ( 1 + μ τ ) ξ + μ μ ( 1 + μ τ 2 ) η a = ( 1 + μ τ ) ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ω = 0 H E ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! + μ τ ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
Then,
ω = 0 H E ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! + ω = 0 ω H E ω 1 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ μ ω ω ! .
Thus, we have
ω = 0 H E ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) + μ ω H E ω 1 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
In view of the above equation, the result is
H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = H E ω [ m 1 , α ] ( ξ + μ , η ; μ , b ; λ ) μ ω H E ω 1 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Therefore, we obtain (17). The proofs of (16) and (18) are analogous to the previous procedure. □
Theorem 4.
For m N , the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m comply with the following relationships:
H B ω [ m 1 , α ] ( ξ , η ; μ ; λ ) = H B ω [ m 1 , α ] ( ξ , η + μ ; μ , b ; λ ) μ ω ( ω 1 ) H B ω 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H E ω [ m 1 , α ] ( ξ , η ; μ ; λ ) = H E ω [ m 1 , α ] ( ξ , η + μ ; μ , b ; λ ) μ ω ( ω 1 ) H E ω 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H G ω [ m 1 , α ] ( ξ , η ; μ ; λ ) = H G ω [ m 1 , α ] ( ξ , η + μ ; μ , b ; λ ) μ ω ( ω 1 ) H G ω 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Proof. 
From generating function (9), we have
( 2 τ ) m σ ( λ ; μ , b ; τ ) α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η + μ μ = ( 1 + μ τ 2 ) ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ω = 0 H G ω [ m 1 , α ] ( ξ , η + μ ; μ , b ; λ ) τ ω ω ! = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! + μ τ 2 ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
Then,
ω = 0 H G ω [ m 1 , α ] ( ξ , η + μ ; μ , b ; λ ) τ ω ω ! = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! + ω = 0 H G ω 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) μ ω ( ω 1 ) τ ω ω ! .
Thus, we have
ω = 0 H G ω [ m 1 , α ] ( ξ , η + μ ; μ , b ; λ ) τ ω ω ! = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) + μ ω ( ω 1 ) H G ω 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
Comparing the coefficients of τ ω on both sides of the equation, we obtain the result (21). The proofs of (19) and (20) are analogous to the previous procedure. □
Theorem 5.
For m N , for the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m, the following properties are maintained:
H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ξ , = k = 0 ω 1 ω ( 1 ) k μ k k ! k + 1 ω 1 k H B ω 1 k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ξ , = k = 0 ω 1 ω ( 1 ) k μ k k ! k + 1 ω 1 k H E ω 1 k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ξ , = k = 0 ω 1 ω ( 1 ) k μ k k ! k + 1 ω 1 k H G ω 1 k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Proof. 
Partially differentiating (7) with respect to ξ , we have
ω = 0 ξ H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = τ m α [ σ ( λ ; μ , b ; τ ) ] α ξ ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ , = τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ ln ( 1 + μ τ ) 1 μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! × ω = 0 ( 1 ) ω ω + 1 μ ω + 1 τ ω + 1 1 μ = ω = 0 k = 0 ω H B ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) × ( 1 ) k μ k ω k k ! k + 1 τ ω + 1 ω ! .
Thus, we have
ω = 0 ξ H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 k = 0 ω 1 H B ω 1 k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) × ( 1 ) k μ k ω ω 1 k k ! k + 1 τ ω ω ! .
Comparing the coefficients of τ ω on both sides of the equation, the result is
H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ξ = k = 0 ω 1 ω ( 1 ) k μ k k ! k + 1 ω 1 k H B ω 1 k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
The proofs of (23) and (24) are analogous to (22).
Theorem 6.
For m N , for the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m, the following properties are maintained:
H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) η = k = 0 ω k ω ( ω 1 ) ( 1 ) k μ k 2 k ! k + 1 ω 2 2 k H B ω 2 k 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) η = k = 0 ω k ω ( ω 1 ) ( 1 ) k a k 2 k ! k + 1 ω 2 2 k H E ω 2 k 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) η = k = 0 ω k ω ( ω 1 ) ( 1 ) k a k 2 k ! k + 1 ω 2 2 k H G ω 2 k 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Proof. 
Partially differentiating (7) with respect to η , we have
ω = 0 η H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ η ( 1 + μ τ 2 ) η μ = τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ ln ( 1 + μ τ 2 ) 1 μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ω = 0 ( 1 ) ω ω + 1 μ ω + 1 τ 2 n + 2 1 μ = ω = 0 k = 0 ω H B ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ( 1 ) k k + 1 μ k τ ω + k + 2 ( ω k ) ! .
Thus, we have
ω = 0 η H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ω = 0 k = 0 ω k H B ω 2 2 k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) × ( 1 ) k μ k ω ( ω 1 ) ω 2 2 k 2 k ! k + 1 τ ω ω ! .
Comparing the coefficients of τ ω on both sides of the equation, the result is
H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) η = k = 0 ω k ω ( ω 1 ) ( 1 ) k μ k 2 k ! k + 1 ω 2 2 k H B ω 2 k 2 [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
The proofs of (26) and (27) are analogous to (25).
Theorem 7.
For m N , the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m comply with the following relationships:
k = 0 ω H B ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H B k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = k = 0 ω ω k H B ω k [ m 1 , α ] ( μ , b ; λ ) × H B k [ m 1 , α ] ( 2 ξ , 2 η ; μ , b ; λ ) ,
k = 0 ω H E ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H E k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = k = 0 ω ω k H E ω k [ m 1 , α ] ( μ , b ; λ ) × H E k [ m 1 , α ] ( 2 ξ , 2 η ; μ , b ; λ ) ,
k = 0 ω H G ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H G k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = k = 0 ω ω k H G ω k [ m 1 , α ] ( μ , b ; λ ) × H G k [ m 1 , α ] ( 2 ξ , 2 η ; μ , b ; λ ) .
Proof. 
Consider the following expressions:
τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω !
and
τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = r = 0 H B r [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
From (31) and (32), we have
τ m α [ σ ( λ ; μ , b ; τ ) ] 2 α ( 1 + μ τ ) 2 ξ μ ( 1 + μ τ 2 ) 2 η μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! r = 0 H B r [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω !
ω = 0 H B ω [ m 1 , α ] ( μ , b ; λ ) τ ω ω ! r = 0 H B r [ m 1 , α ] ( 2 ξ , 2 η ; μ , b ; λ ) τ ω ω ! = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! r = 0 H B r [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω !
ω = 0 k = 0 ω ω k H B ω k [ m 1 , α ] ( μ , b ; λ ) H B k [ m 1 , α ] ( 2 ξ , 2 η , μ , b ; λ ) τ ω ω ! = ω = 0 k = 0 ω ω k H B ω k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) H B k [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
Hence, we get contention (28). □
The proofs of (29) and (30) are comparable to (28).
Theorem 8.
For m N , the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m comply with the following relationships:
H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = ( 1 ) α ω ! ( 2 ) m α ( ω m α ) ! H E ω m α [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = ( 2 ) m α ω ! ( n + m α ) ! H B n + m α [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Proof. 
Proof of (33). Considering the generating function (7):
τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ( 1 ) α 2 m α 2 m α τ m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ,
we have
ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ( 1 ) α 2 m α ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ n + m α ω ! ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ( 1 ) α 2 m α ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ( ω m α ) ! .
Therefore, by the above equation, we obtain the result. □
Proof. 
Proof of (34). Considering the generating function (8):
2 m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ( 1 ) α 2 m α τ m α τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ,
we have
ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ( 2 ) m α ω = 0 B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ( ω m α ) ω ! ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! = ( 2 ) m α ω = 0 H B n + m α [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ( n + m α ) ! .
In view of the above equation, we obtain the result. □
Theorem 9.
For m N , the new families of Hermite–Apostol-type degenerated polynomials in invariable x, with parameters λ C and μ Z , order α N 0 and level m comply with the following relationships:
H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = ( 2 ) m α H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) ,
H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) = ω ! ( ω m α ) ! H E ω m α [ m 1 , α ] ( ξ , η ; μ , b ; λ ) .
Proof. 
Proof of (35). Taking into account the generating function (7), we can observe that
τ m α [ σ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η μ = ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! 2 m α τ m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η a = ( 2 m ) α ω = 0 H B ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
Therefore, from (9) and (37), we obtain
ω = 0 H G ω [ m 1 , α ] ( x ; μ , b ; λ ) τ ω ω ! = ω = 0 ( 2 ) m α H B ω [ m 1 , α ] ( x ; μ , b ; λ ) τ ω ω ! .
In view of the above equation, we obtain the result. □
Proof. 
Proof of (36). From (9), we have:
2 m α τ m α [ ψ ( λ ; μ , b ; τ ) ] α ( 1 + μ τ ) ξ μ ( 1 + μ τ 2 ) η a = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ω = 0 H E ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ n + m α ω ! = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! ,
then,
ω = 0 H E ω m α [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ( ω m α ) ! = ω = 0 H G ω [ m 1 , α ] ( ξ , η ; μ , b ; λ ) τ ω ω ! .
Therefore, by the above equation, we obtain the result. □

3. Conclusions

In recent years, Apostol-type polynomials have become the subject of intensive research due to their diverse range of applications, while Bernoulli, Euler, Genocchi, and Hermite polynomials are well-known families of polynomials with many applications in areas such as numerical analysis, asymptotic approximation, and special function theory, which have led to a wide range of uses in engineering and applied sciences [20]. Due to the importance of these application areas, many extensions of Apostol-type polynomials have been studied, such as degenerate Apostol-type polynomials in [19], Hermite-based Apostol-type polynomials in [2], Laguerre-based Apostol-type polynomials in [3,24,32], and truncated-exponential-based Apostol-type polynomials, especially in the last decade. In the literature, extensions of several structures are considered essential if the extension unifies existing structures. Unification focuses researchers on investigating advanced properties rather than just studying modified families that have similar properties to the existing area.
The objective of this paper is to examine new families of Hermite–Apostol-type degenerated polynomials, specifically the Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite polynomials of level m. These polynomials have significant applications in the areas of applied mathematics, physics, and engineering. The properties of these polynomials are established based on classical special functions. The theorems presented in this study demonstrate the usefulness of the series rearrangement technique for the treatment of special functions theory.

Author Contributions

C.C., W.R., S.D., A.S. and W.A.K. developed the theory and performed the computations. C.C., W.R., S.D., A.S. and W.A.K. discussed the results. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors acknowledge and appreciate the assistance provided by the Universidad Telemática Internacional Uninettuno (Italy) and the Universidad de la Costa (Colombia) in conducting this study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Apostol, T. On the Lerch Zeta-function. Pacific J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef]
  2. Bedoya, D.; Cesarano, C.; Díaz, S.; Ramírez, W. New Classes of Degenerate Unified Polynomials. Axioms 2023, 12, 21. [Google Scholar] [CrossRef]
  3. Bedoya, D.; Ortega, M.; Ramírez, W.; Urieles, A. New biparametric families of Apostol-Frobenius–Euler polynomials of level m. Mat. Stud. 2021, 55, 10–23. [Google Scholar] [CrossRef]
  4. Castilla, L.; Ramírez, W.; Urieles, A. An Extended Generalized -Extensions for the Apostol Type Polynomials. Abstr. Appl. Anal. 2018, 2018, 2937950. [Google Scholar] [CrossRef]
  5. Cesarano, C. Operational Methods and New Identities for Hermite Polynomials. Math. Model. Nat. Phenom. 2017, 12, 44–50. [Google Scholar] [CrossRef]
  6. Cesarano, C.; Cennamo, G.M.; Placidi, L. Operational methods for Hermite polynomials with applications. WSEAS Trans. Math. 2014, 13, 925–931. [Google Scholar]
  7. Cesarano, C.; Ramírez, W.; Khan, S. A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Res. Notes Approx. 2022, 15, 10. [Google Scholar]
  8. Cesarano, C. Integral representations and new generating functions of Chebyshev polynomials. Hacet. J. Math. Stat. 2015, 44, 541–552. [Google Scholar] [CrossRef]
  9. Cesarano, C. Generalized Chebyshev polynomials. Hacet. J. Math. Stat. 2014, 43, 731–740. [Google Scholar]
  10. Dattoli, G.; Cesarano, C. On a new family of Hermite polynomials associated with parabolic cylinder functions. Appl. Math. Comput. 2003, 141, 143–149. [Google Scholar] [CrossRef]
  11. Liu, H.; Wang, W. Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309, 3346–3363. [Google Scholar] [CrossRef]
  12. Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 3, 155–163. [Google Scholar] [CrossRef]
  13. Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
  14. Khan, W.A. Degenerate Hermite-Bernoulli Numbers and Polynomials of the second kind. Prespacetime J. 2016, 7, 1200–1208. [Google Scholar]
  15. Khan, W.A. A new class of degenerate Frobenius Euler–Hermite polynomials. Adv. Stud. Contemp. Math. 2018, 28, 567–576. [Google Scholar]
  16. Burak, K. Explicit relations for the modified degenerate Apostol-type polynomials. Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg. 2018, 20, 401–412. [Google Scholar]
  17. Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569–579. [Google Scholar] [CrossRef]
  18. Subuhi, K.; Tabinda, N.; Mumtaz, R. On degenerate Apostol-type polynomials and applications. Bol. Soc. Mat. Mex. 2019, 25, 509–528. [Google Scholar]
  19. Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques Polynomes d’Hermite; Gautier Villars: Paris, France, 1926. [Google Scholar]
  20. Andrews, L.C. Special functions for Engineers and Applied Mathematicians; Macmillan: New York, NY, USA, 1985. [Google Scholar]
  21. Khan, W.A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65–76. [Google Scholar] [CrossRef]
  22. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: London, UK, 2012. [Google Scholar]
  23. Cesarano, C.; Ramírez, W. Some new classes of degenerated generalized Apostol-Bernoulli, Apostol–Euler and Apostol-Genocchi polynomials. Carpathian Math. Publ. 2022, 14, 354–363. [Google Scholar]
  24. Böck, C.; Kovács, P.; Laguna, P.; Meier, J.; Huemer, M. ECG Beat Representation and Delineation by means of Variable. IEEE Trans. Biomed. Eng. 2021, 68, 2997–3008. [Google Scholar] [CrossRef]
  25. Dózsa, T.; Radó, J.; Volk, J.; Kisari, A.; Soumelidis, A.; Kovócs, P. Road abnormality detection using piezoresistive force sensors and adaptive signal models. IEEE Trans. Instrum. Meas. 2022, 71, 9509211. [Google Scholar] [CrossRef]
  26. Kovács, P.; Böck, C.; Dózsa, T.; Meier, J.; Huemer, M. Waveform Modeling by Adaptive Weighted Hermite Functions. In Proceedings of the 44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1080–1084. [Google Scholar]
  27. Kovács, P.; Bognár, G.; Huber, C.; Huemer, M. VPNET: Variable Projection Networks. Int. J. Neural Syst. 2021, 32, 2150054. [Google Scholar] [CrossRef] [PubMed]
  28. Pathan, M. A new class of generalized Hermite-Bernoulli polynomials. Georgian Math. J. 2012, 19, 559–573. [Google Scholar] [CrossRef]
  29. Quintana, Y.; Ramírez, W.; Urieles, A. On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo 2018, 55, 30. [Google Scholar] [CrossRef]
  30. Tremblay, R.; Gaboury, S.; Fugére, B.-J. Some new classes of generalized Apostol–Euler and Apostol-Genocchi polynomials. Int. J. Math. Math. Sci. 2012, 2012, 182785. [Google Scholar] [CrossRef]
  31. Tremblay, R.; Gaboury, S.; Fugère, B.-J. A further generalization of Apostol-Bernoulli polynomials and related polynomials. Honam Math. J. 2012, 34, 311–326. [Google Scholar] [CrossRef]
  32. Ramírez, W.; Cesarano, C.; Díaz, S. New Results for Degenerated Generalized Apostol–bernoulli, Apostol–euler and Apostol–genocchi Polynomials. WSEAS Trans. Math. 2022, 21, 604–608. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cesarano, C.; Ramírez, W.; Díaz, S.; Shamaoon, A.; Khan, W.A. On Apostol-Type Hermite Degenerated Polynomials. Mathematics 2023, 11, 1914. https://doi.org/10.3390/math11081914

AMA Style

Cesarano C, Ramírez W, Díaz S, Shamaoon A, Khan WA. On Apostol-Type Hermite Degenerated Polynomials. Mathematics. 2023; 11(8):1914. https://doi.org/10.3390/math11081914

Chicago/Turabian Style

Cesarano, Clemente, William Ramírez, Stiven Díaz, Adnan Shamaoon, and Waseem Ahmad Khan. 2023. "On Apostol-Type Hermite Degenerated Polynomials" Mathematics 11, no. 8: 1914. https://doi.org/10.3390/math11081914

APA Style

Cesarano, C., Ramírez, W., Díaz, S., Shamaoon, A., & Khan, W. A. (2023). On Apostol-Type Hermite Degenerated Polynomials. Mathematics, 11(8), 1914. https://doi.org/10.3390/math11081914

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop