On Apostol-Type Hermite Degenerated Polynomials
Abstract
:1. Introduction
2. Generalizations of New Classes of Degenerated Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite Polynomials of Level m
-th generalized Bernoulli polynomial of level m | |
-th generalized Euler polynomial of level m | |
-th generalized Genocchi polynomial of level m | |
-th generalized Apostol–Genocchi Hermite polynomial | |
-th Apostol–Bernoulli polynomial | |
-th Apostol–Euler polynomial | |
-th Apostol–Genocchi Hermite polynomial | |
-th generalized Bernoulli polynomial | |
-th generalized Euler polynomial | |
-th generalized Genocchi polynomial | |
-th Bernoulli polynomial | |
-th Euler polynomial | |
-th Genocchi polynomial |
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apostol, T. On the Lerch Zeta-function. Pacific J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef]
- Bedoya, D.; Cesarano, C.; Díaz, S.; Ramírez, W. New Classes of Degenerate Unified Polynomials. Axioms 2023, 12, 21. [Google Scholar] [CrossRef]
- Bedoya, D.; Ortega, M.; Ramírez, W.; Urieles, A. New biparametric families of Apostol-Frobenius–Euler polynomials of level m. Mat. Stud. 2021, 55, 10–23. [Google Scholar] [CrossRef]
- Castilla, L.; Ramírez, W.; Urieles, A. An Extended Generalized -Extensions for the Apostol Type Polynomials. Abstr. Appl. Anal. 2018, 2018, 2937950. [Google Scholar] [CrossRef]
- Cesarano, C. Operational Methods and New Identities for Hermite Polynomials. Math. Model. Nat. Phenom. 2017, 12, 44–50. [Google Scholar] [CrossRef]
- Cesarano, C.; Cennamo, G.M.; Placidi, L. Operational methods for Hermite polynomials with applications. WSEAS Trans. Math. 2014, 13, 925–931. [Google Scholar]
- Cesarano, C.; Ramírez, W.; Khan, S. A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Res. Notes Approx. 2022, 15, 10. [Google Scholar]
- Cesarano, C. Integral representations and new generating functions of Chebyshev polynomials. Hacet. J. Math. Stat. 2015, 44, 541–552. [Google Scholar] [CrossRef]
- Cesarano, C. Generalized Chebyshev polynomials. Hacet. J. Math. Stat. 2014, 43, 731–740. [Google Scholar]
- Dattoli, G.; Cesarano, C. On a new family of Hermite polynomials associated with parabolic cylinder functions. Appl. Math. Comput. 2003, 141, 143–149. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309, 3346–3363. [Google Scholar] [CrossRef]
- Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 3, 155–163. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Khan, W.A. Degenerate Hermite-Bernoulli Numbers and Polynomials of the second kind. Prespacetime J. 2016, 7, 1200–1208. [Google Scholar]
- Khan, W.A. A new class of degenerate Frobenius Euler–Hermite polynomials. Adv. Stud. Contemp. Math. 2018, 28, 567–576. [Google Scholar]
- Burak, K. Explicit relations for the modified degenerate Apostol-type polynomials. Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg. 2018, 20, 401–412. [Google Scholar]
- Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569–579. [Google Scholar] [CrossRef]
- Subuhi, K.; Tabinda, N.; Mumtaz, R. On degenerate Apostol-type polynomials and applications. Bol. Soc. Mat. Mex. 2019, 25, 509–528. [Google Scholar]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques Polynomes d’Hermite; Gautier Villars: Paris, France, 1926. [Google Scholar]
- Andrews, L.C. Special functions for Engineers and Applied Mathematicians; Macmillan: New York, NY, USA, 1985. [Google Scholar]
- Khan, W.A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65–76. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: London, UK, 2012. [Google Scholar]
- Cesarano, C.; Ramírez, W. Some new classes of degenerated generalized Apostol-Bernoulli, Apostol–Euler and Apostol-Genocchi polynomials. Carpathian Math. Publ. 2022, 14, 354–363. [Google Scholar]
- Böck, C.; Kovács, P.; Laguna, P.; Meier, J.; Huemer, M. ECG Beat Representation and Delineation by means of Variable. IEEE Trans. Biomed. Eng. 2021, 68, 2997–3008. [Google Scholar] [CrossRef]
- Dózsa, T.; Radó, J.; Volk, J.; Kisari, A.; Soumelidis, A.; Kovócs, P. Road abnormality detection using piezoresistive force sensors and adaptive signal models. IEEE Trans. Instrum. Meas. 2022, 71, 9509211. [Google Scholar] [CrossRef]
- Kovács, P.; Böck, C.; Dózsa, T.; Meier, J.; Huemer, M. Waveform Modeling by Adaptive Weighted Hermite Functions. In Proceedings of the 44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1080–1084. [Google Scholar]
- Kovács, P.; Bognár, G.; Huber, C.; Huemer, M. VPNET: Variable Projection Networks. Int. J. Neural Syst. 2021, 32, 2150054. [Google Scholar] [CrossRef] [PubMed]
- Pathan, M. A new class of generalized Hermite-Bernoulli polynomials. Georgian Math. J. 2012, 19, 559–573. [Google Scholar] [CrossRef]
- Quintana, Y.; Ramírez, W.; Urieles, A. On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo 2018, 55, 30. [Google Scholar] [CrossRef]
- Tremblay, R.; Gaboury, S.; Fugére, B.-J. Some new classes of generalized Apostol–Euler and Apostol-Genocchi polynomials. Int. J. Math. Math. Sci. 2012, 2012, 182785. [Google Scholar] [CrossRef]
- Tremblay, R.; Gaboury, S.; Fugère, B.-J. A further generalization of Apostol-Bernoulli polynomials and related polynomials. Honam Math. J. 2012, 34, 311–326. [Google Scholar] [CrossRef]
- Ramírez, W.; Cesarano, C.; Díaz, S. New Results for Degenerated Generalized Apostol–bernoulli, Apostol–euler and Apostol–genocchi Polynomials. WSEAS Trans. Math. 2022, 21, 604–608. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesarano, C.; Ramírez, W.; Díaz, S.; Shamaoon, A.; Khan, W.A. On Apostol-Type Hermite Degenerated Polynomials. Mathematics 2023, 11, 1914. https://doi.org/10.3390/math11081914
Cesarano C, Ramírez W, Díaz S, Shamaoon A, Khan WA. On Apostol-Type Hermite Degenerated Polynomials. Mathematics. 2023; 11(8):1914. https://doi.org/10.3390/math11081914
Chicago/Turabian StyleCesarano, Clemente, William Ramírez, Stiven Díaz, Adnan Shamaoon, and Waseem Ahmad Khan. 2023. "On Apostol-Type Hermite Degenerated Polynomials" Mathematics 11, no. 8: 1914. https://doi.org/10.3390/math11081914
APA StyleCesarano, C., Ramírez, W., Díaz, S., Shamaoon, A., & Khan, W. A. (2023). On Apostol-Type Hermite Degenerated Polynomials. Mathematics, 11(8), 1914. https://doi.org/10.3390/math11081914