Some Properties of the χ-Curvature under Conformal Transformation
Abstract
:1. Introduction
2. Preliminaries
3. The Conformal Transformation Preserving the -Curvature of Randers Metrics
4. Proof of the Main Theorem
- (i)
- satisfies
- (ii)
- satisfies
5. Proofs of Other Results
6. Proof of Theorem 1
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Knebelman, M. Conformal geometry of generalised metric spaces. Proc. Natl. Acad. Sci. USA 1929, 15, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Rund, H. The Differential Geometry of Finsler Spaces; Springer: Berlin/Heidelberg, Germany, 1959. [Google Scholar]
- Bacso, S.; Cheng, X.Y. Finsler conformal transformations and the curvature invariances. Publ. Math. Debrecen. 2007, 70, 221–231. [Google Scholar] [CrossRef]
- Chen, G.Z.; Cheng, X.Y.; Zou, Y. On conformal transformations between two (α,β)-metrics. Differ. Geom. Appl. 2013, 31, 300–307. [Google Scholar] [CrossRef]
- Chen, G.Z.; Liu, L.H. On conformal transformations between two almost regular (α,β)-metrics. Bull. Korean Math. Soc. 2018, 55, 1231–1240. [Google Scholar] [CrossRef]
- Shen, B. S-closed conformal transformations in Finsler geometry. Differ. Geom. Appl. 2018, 58, 254–263. [Google Scholar] [CrossRef]
- Feng, Y.L.; Zhang, X.L. Conformal transformations on Finsler warped product manifolds. Publ. Math. Debr. 2021. Available online: https://publi.math.unideb.hu/forthcoming/9414-Feng-Zhang_abs.pdf (accessed on 1 March 2023).
- Shen, Z.M. On some non-Riemannian quantities in Finsler geometry. Can. Math. Bull. 2013, 56, 184–193. [Google Scholar] [CrossRef]
- Mo, X.H. A class of Finsler metrics with almost vanishing H-curvature. Balk. J. Geom. Appl. 2016, 21, 58–66. [Google Scholar]
- Chen, G.Z.; Liu, L.H. On Kropina metrics with non-Riemannian curvature properties. Differ. Geom. Appl. 2015, 43, 180–191. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Yuan, M.G. On conformally flat (α,β)-metrics with special curvature properties. Acta. Math. Sin. 2015, 5, 879–892. [Google Scholar] [CrossRef]
- Li, B.L.; Shen, Z.M. Ricci curvature tensor and non-Riemannian quantities. Can. Math. Bull. 2015, 3, 530–537. [Google Scholar] [CrossRef]
- Li, B.L.; Shen, Z.M. Sprays of isotropic curvature. Int. J. Math. 2018, 29, 29–46. [Google Scholar] [CrossRef]
- Shen, Z.M. On sprays with vanishing χ-curvature. Int. J. Math. 2021, 32, 2150069. [Google Scholar] [CrossRef]
- Randers, G. On an asymmetric metric in the four-space of general relativity. Phys. Rev. 1949, 51, 195–199. [Google Scholar]
- Cheng, X.Y.; Shen, Z.M. Finsler Geometry—An Approach via Randers Spases; Springer and Science Press: Heidelberg, Germany; Beijing, China, 2012. [Google Scholar]
- Zhou, S.; Wang, J.; Li, L. On a class of almost regular Landsberg metrics. Sci. China Math. 2019, 62, 935–960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhang, X.; Zhao, L. Some Properties of the χ-Curvature under Conformal Transformation. Mathematics 2023, 11, 1941. https://doi.org/10.3390/math11081941
Yan X, Zhang X, Zhao L. Some Properties of the χ-Curvature under Conformal Transformation. Mathematics. 2023; 11(8):1941. https://doi.org/10.3390/math11081941
Chicago/Turabian StyleYan, Xiaofeng, Xiaoling Zhang, and Lili Zhao. 2023. "Some Properties of the χ-Curvature under Conformal Transformation" Mathematics 11, no. 8: 1941. https://doi.org/10.3390/math11081941
APA StyleYan, X., Zhang, X., & Zhao, L. (2023). Some Properties of the χ-Curvature under Conformal Transformation. Mathematics, 11(8), 1941. https://doi.org/10.3390/math11081941