A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition
Abstract
:1. Introduction
2. Approximation of p-Laplacian Equation by Finite Element Method
2.1. Results of the p-Laplacian Operator
2.2. Mathematical Problem
2.3. A Posteriori Error Estimator
3. Approximation of Quasi-Newtonian Stokes Problem by Finite Element Method
3.1. Definition of Quasi-Newtonian Stokes Problem
3.2. Mathematical Problem
3.3. A Posteriori Error Estimator
4. Numerical Simulations
4.1. Fist Experience
4.2. Second Experience
5. Conclusions & Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babuka, I.; Strouboulis, T.; Upadhyay, C.S.; Gangaraj, S.K.; Copps, K. Validation of a-posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 1994, 37, 1073–1123. [Google Scholar] [CrossRef]
- Zhu, J.Z. A-posteriori error estimation-the relationship between different procedures. Comput. Methods Appl. Mech. Eng. 1997, 150, 411–422. [Google Scholar] [CrossRef]
- Baker, T.J. Mesh adaptation strategies for problems in fluid dynamics. Finite Elem. Anal. Des. 1997, 25, 243–273. [Google Scholar] [CrossRef]
- Greve, R.; Blatter, H. Dynamics of Ice Sheets and Glaciers; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Pralong, A.; Funk, M. A level-set method for modeling the evolution of glacier geometry. J. Glaciol. 2004, 50, 485–491. [Google Scholar] [CrossRef]
- Pralong, A.; Funk, M. Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. 2005, 110, B01309. [Google Scholar] [CrossRef]
- Abraham, F.; Behr, M.; Heinkenschloss, M. Shape optimization in unsteady blood flow: A numerical study of non-Newtonian effects. Comput. Meth. Biomech. Biomed. 2005, 8, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Baranger, J.; Sandri, D. Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds Part I. discontinuous constraints. Numer. Math. 1992, 63, 13–27. [Google Scholar] [CrossRef]
- Carreau, P.J.; MacDonald, I.F.; Bird, R.B. A nonlinear viscoelastic model for polymer solutions and melts (II). Chem. Eng. Sci 1968, 23, 901–911. [Google Scholar] [CrossRef]
- Yasuda, K.Y.; Armstrong, R.C.; Cohen, R.E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 1981, 20, 163–178. [Google Scholar] [CrossRef]
- Cross, M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965, 20, 417–437. [Google Scholar] [CrossRef]
- Glowinski, R.; Marrocco, A. Sur l’approximation par éléments finis d’ordre 1 et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Numérique 1975, R–2, 41–76. [Google Scholar] [CrossRef]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; SIAM Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1978. [Google Scholar]
- Saramito, P. Complex Fluids Modeling and Algorithms; Springer: Cham, Swtzerland, 2016. [Google Scholar]
- Droniou, J. Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM Math. Model. Numer. Anal. 2006, 40, 1069–1100. [Google Scholar] [CrossRef]
- Di Pietro, D.A.; Droniou, J. A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comp. 2017, 86, 2159–2191. [Google Scholar] [CrossRef]
- Atkinson, C.; Jones, C.W. Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo-plastic fluid. Quart. J. Mech. Appl. Math. 1974, 27, 193–211. [Google Scholar] [CrossRef]
- Bank, R.E.; Weiser, A. Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 1985, 44, 283–301. [Google Scholar] [CrossRef]
- Barrett, J.W.; Liu, W.B. Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 1994, 31, 413–428. [Google Scholar] [CrossRef]
- Liu, W.B.; Barrett, J.W. A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation. J. Math. Anal. Appl. 1993, 178, 470–487. [Google Scholar] [CrossRef]
- Liu, W.B.; Barrett, J.W. A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation. Nonlinear Anal. 1993, 21, 379–387. [Google Scholar] [CrossRef]
- Barrett, J.W.; Liu, W.B. Finite element approximation of the p-Laplacian. Math. Comput. 1993, 61, 523–537. [Google Scholar] [CrossRef]
- Philip, J.R. N-diffusion. Aust. J. Phys. 1961, 14, 1–13. [Google Scholar] [CrossRef]
- Baranger, J.; El Amri, H. Estimateurs a posteriori d’erreurs pour le calcul adaptatif d’écoulements Quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 1991, 25, 31–48. [Google Scholar] [CrossRef]
- Bi, C.; Wang, C.; Lin, Y. A posteriori error estimates of hp-discontinuous Galerkin method for strongly nonlinear elliptic problems. Comput. Methods Appl. Mech. Eng. 2015, 297, 140–166. [Google Scholar] [CrossRef]
- Liu, W.; Yan, N. Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal. 2001, 39, 100–127. [Google Scholar] [CrossRef]
- Liu, W.; Yan, N. On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian. SIAM J. Numer. Anal. 2002, 40, 1870–1895. [Google Scholar] [CrossRef]
- Verfürth, R. A posteriori error estimates for nonlinear problems, Finite element discretizations of elliptic equations. Math. Comput. 1994, 62, 445–475. [Google Scholar] [CrossRef]
- Verfürth, R. A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. ESAIM Math. Model. Numer. Anal. 1998, 32, 817–842. [Google Scholar] [CrossRef]
- Veeser, A. Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 2002, 92, 743–770. [Google Scholar] [CrossRef]
- Carstensen, C.; Liu, W.; Yan, N. A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm. Math. Comput. 2006, 75, 1599–1616. [Google Scholar] [CrossRef]
- Endtmayer, B.; Langer, U.; Wick, T. Multigoal-oriented error estimates for non-linear problems. J. Numer. Math. 2019, 27, 215–236. [Google Scholar] [CrossRef]
- EL-Moutea, O.; EL-Amri, H.; EL-Akkad, A. Mixed finite element method for flow of fluid in complex porous media with a new boundary condition. Comput. Sci. 2020, 15, 413–431. [Google Scholar]
- EL-Moutea, O.; EL-Amri, H. Combined Mixed Finite Element and Nonconforming Finite Volume Methods For Flow And Transport In Porous Media. Analysis 2021, 41, 123–144. [Google Scholar] [CrossRef]
- Barrett, J.W.; Liu, W.B. Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 1994, 68, 437–456. [Google Scholar] [CrossRef]
- Glowinski, R.; Rappaz, J. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal. 2003, 37, 175–186. [Google Scholar] [CrossRef]
- Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Georget, P. Contribution à L’étude des Equations de Stokes à Viscosité Variable. Ph.D. Thesis, Université de Lyon I, Saint-Étienne, France, 1985. [Google Scholar]
- Oden, J.T. Qualitative Methods in Nonlinear Mechanics; Prentice Hall, Inc. Englewood Cliffs: Hoboken, NJ, USA, 1986. [Google Scholar]
- Najib, K. Analyse Numérique de Modèles d’Écoulements Quasi-Newtoniens. Ph.D. Thesis, Université de Lyon I, Saint-Étienne, France, 1988. [Google Scholar]
- Barreet, J.W.; Liu, W.B. Finite element error analysis of a Quasi-Newtonian flow obeying the Carreau or power law. Numer. Math. 1993, 64, 433–453. [Google Scholar] [CrossRef]
- Scheurer, B. Existence et approximation de points selles pour certains problèmes non linéaires. RAIRO Anal. Numérique 1977, 11, 369–400. [Google Scholar] [CrossRef]
- Baranger, J.; El Amri, H. A posteriori error estimators for mixed finite element approximation of some Quasi-newtonian flows. In Proceedings of the an Innovative Finite Element Methods 1989, Rio de Janeiro, Brazil, 27 November–1 December 1989. [Google Scholar]
- Sirivithayapakorn, S.; Keller, A. Transport of Colloids in Saturated Porous Media: A Pore-scale Observation of the Size Exclusion Effect and Colloid Acceleration. Water Resour. Res. 2003, 39, 1109. [Google Scholar] [CrossRef]
- Elman, H.C.; Ramage, A.; Silvester, D.J. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. TOMS 2007, 33, 14-es. [Google Scholar] [CrossRef]
- Silvester, D.; Elman, H.; Ramage, A. Incompressible Flow and Iterative Solver Software (IFISS), Version 3.2; University of Manchester: Manchester, UK, 2012. [Google Scholar]
- Auset, M.; Keller, A. Pore-scale Processes that Control Dispersion of Colloids in Saturated Porous Media. Water Resour. 2004, 40, W03503. [Google Scholar] [CrossRef]
- El Ouadefli, L.; El Akkad, A.; El Moutea, O.; Moustabchir, H.; Elkhalfi, A.; Luminița Scutaru, M.; Muntean, R. Numerical simulation for Brinkman system with varied permeability tensor. Mathematics 2022, 10, 3242. [Google Scholar] [CrossRef]
- EL Moutea, O.; EL Amri, H.; EL Akkad, A. Finite Element Method for the Stokes–Darcy Problem with a New Boundary Condition. Numer. Anal. Appl. 2020, 13, 136–151. [Google Scholar] [CrossRef]
- Elakkad, A.; Elkhalfi, A.; Guessous, N. An a posteriori error estimate for mixed finite element approximations of the Navier-Stokes equations. J. Korean Math. Soc. 2011, 48, 529–550. [Google Scholar] [CrossRef]
- El Fakkoussi, S.; Moustabchir, H.; Elkhalfi, A.; Pruncu, C.I. Computation of the stress intensity factor KI for external longitudinal semi-elliptic cracks in the pipelines by FEM and XFEM methods. Int. J. Interact. Des. Manuf. 2019, 13, 545–555. [Google Scholar] [CrossRef]
- Koubaiti, O.; Elkhalfi, A.; El-Mekkaoui, J.; Mastorakis, N. Solving the problem of constraints due to Dirichlet boundary conditions in the context of the mini element method. Int. J. Mech. 2020, 14, 12–22. [Google Scholar]
- Montassir, S.; Yakoubi, K.; Moustabchir, H.; Elkhalfi, A.; Rajak, D.; Pruncu, C. Analysis of crack behaviour in pipeline system using FAD diagram based on numerical simulation under XFEM. Appl. Sci. 2020, 10, 6129. [Google Scholar] [CrossRef]
Elements | Errors | Number of Girds | ||||
---|---|---|---|---|---|---|
5.86 × 100 | 1.34 × 100 | 9.99 × 10−1 | 8.38 × 10−1 | 2.37 × 10−1 | ||
8.77 × 10−2 | 2.22 × 10−2 | 5.65 × 10−3 | 1.47 × 10−3 | 3.92 × 10−4 | ||
4.22 × 100 | 1.75 × 100 | 9.43 × 10−1 | 5.58 × 10−1 | 3.26 × 10−1 | ||
5.98 × 100 | 1.90 × 100 | 1.28 × 100 | 9.93 × 10−1 | 2.47 × 10−1 | ||
1.29 × 10−1 | 4.09 × 10−2 | 1.35 × 10−2 | 7.39 × 10−3 | 1.00 × 10−3 | ||
1.11 × 101 | 3.90 × 100 | 1.45 × 100 | 1.65 × 100 | 3.51 × 10−1 | ||
5.36 × 100 | 2.05 × 100 | 6.09 × 10−1 | 2.25 × 10−1 | 1.02 × 10−1 | ||
1.05 × 10−1 | 3.23 × 10−2 | 6.06 × 10−3 | 1.31 × 10−3 | 3.2 × 10−4 | ||
3.24 × 100 | 2.14 × 100 | 1.30 × 100 | 7.61 × 10−1 | 4.29 × 10−1 | ||
5.36 × 100 | 1.67 × 100 | 4.92 × 10−1 | 1.55 × 10−1 | 6.14 × 10−2 | ||
1.07 × 10−1 | 1.28 × 100 | 5.25 × 10−3 | 1.23 × 10−3 | 3.03 × 10−4 | ||
2.70 × 100 | 6.09 × 10−1 | 1.21 × 100 | 7.18 × 10−1 | 4.09 × 10−1 |
Elements | |||||
---|---|---|---|---|---|
1.71 × 10−1 s | 2.08 × 10−1 s | 8.75 × 10−1 s | 3.78 × 100 s | 1.99 × 101 s | |
8.24 × 10−2 s | 3.58 × 10−1 s | 3.69 × 10−1 s | 5.53 × 100 s | 2.42 × 101 s | |
3.19 × 10−2 s | 1.88 × 10−1 s | 1.30 × 100 s | 6.55 × 100 s | 2.66 × 101 s | |
1.69 × 10−1 s | 1.88 × 100 s | 5.33 × 100 s | 3.25 × 101 s | 5.66 × 101 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Moutea, O.; El Ouadefli, L.; El Akkad, A.; Nakbi, N.; Elkhalfi, A.; Scutaru, M.L.; Vlase, S. A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition. Mathematics 2023, 11, 1943. https://doi.org/10.3390/math11081943
El Moutea O, El Ouadefli L, El Akkad A, Nakbi N, Elkhalfi A, Scutaru ML, Vlase S. A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition. Mathematics. 2023; 11(8):1943. https://doi.org/10.3390/math11081943
Chicago/Turabian StyleEl Moutea, Omar, Lahcen El Ouadefli, Abdeslam El Akkad, Nadia Nakbi, Ahmed Elkhalfi, Maria Luminita Scutaru, and Sorin Vlase. 2023. "A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition" Mathematics 11, no. 8: 1943. https://doi.org/10.3390/math11081943
APA StyleEl Moutea, O., El Ouadefli, L., El Akkad, A., Nakbi, N., Elkhalfi, A., Scutaru, M. L., & Vlase, S. (2023). A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition. Mathematics, 11(8), 1943. https://doi.org/10.3390/math11081943