On ν-Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System
Abstract
:1. Introduction
- (i)
- This study explores the existence of fuzzy neutral impulsive fractional stochastic systems with fuzzy metrices and fuzzy Brownian motion for the first time in the literature.
- (ii)
- An example is provided to illustrate the theory.
2. Preliminaries
- (1)
- If , then is interpreted as complete membership.
- (2)
- If then is interpreted as partial membership.
- (3)
- If , then is interpreted as non-membership.
- (1)
- is normal, i.e., for .
- (2)
- is fuzzy convex, i.e., ,
- (3)
- is upper semi-continuous on
- (4)
- is compactly supported, i.e., is compact.
- (1)
- (2)
- (3)
3. Existence of Local Solutions via Contraction Principle
- For η the is measurable, we retain
- For all q,h,ϱ and , we retain
- For , we retain
4. Existence of Global Solutions via Gronwall Inequality
5. Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhayal, R.; Malik, M.; Abbas, S. Solvability and optimal controls of noninstantaneous impulsive stochastic fractional differential equation of order q∈(1, 2). Stochastics 2020, 62, 1275–1283. [Google Scholar] [CrossRef]
- Podlubny, I. Fractioanl Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applicatons; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Alqudah, M.A.; Ravichandran, C.; Abdeljawad, T.; Valliammal, N. New results on Caputo fractional-order neutral differential inclusions without compactness. Adv. Differ. Equ. 2019, 1, 528. [Google Scholar] [CrossRef]
- Dos Santos, J.P.C.; Arjunan, M.M.; Cuevas, C. Existence results for fractional neutral integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1275–1283. [Google Scholar] [CrossRef]
- Valliammal, N.; Ravichandran, C.; Nisar, K.S. Solutions to fractional neutral delay differential nonlocal systems. Chaos Solitons Fractals 2020, 138, 109912. [Google Scholar] [CrossRef]
- Fukuda, T. Basic statistical properties of fuzzy stochastic processes. Otemon Econ. Stud. 1991, 24, 89–120. [Google Scholar]
- Zadeh, L.A. Fuzzy sts. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Puri, M.L.; Ralescu, D.A.; Zadeh, L. Fuzzy random variables. Read. Fuzzy Sets Intell. Syst. 1993, 265–271. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Huibert, K. Fuzzy random variables-I.definitions and theorems. Inf. Sci. 1978, 15, 1–29. [Google Scholar]
- Malinowski, M.T. On random fuzzy differential equations. Fuzzy Sets Syst. 2009, 160, 3152–3165. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Shafqat, R.; Niazi, A.U.; Awadalla, M. Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1, 2). AIMS Math. 2022, 7, 19344–19358. [Google Scholar] [CrossRef]
- Jafari, H.; Farahani, H.; Paripour, M. Fuzzy Malliavin derivative and linear Skorod fuzzy stochastic differential equation. J. Intell. Fuzzy Syst. 2018, 35, 2447–2458. [Google Scholar] [CrossRef]
- Jafari, H.; Malinowski, M.T.; Ebadi, M.J. Fuzzy stochastic differential equations driven by fractional Brownian motion. Adv. Differ. Equ. 2021, 16. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Shafqat, R. Fractional Brownian motion for a system of fuzzy fractional stochastic differential equation. J. Math. 2022, 2022, 3559035. [Google Scholar] [CrossRef]
- Oksendal. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Malinowski, M.T.; Michta, M. Fuzzy stochastic integral equations. Dyn. Syst. Appl. 2010, 19, 473–494. [Google Scholar]
- Malinowski, M.T. Bipartite fuzzy stochastic differential equations with global Lipschitz condition. Math. Probl. Eng. 2016, 2016, 3830529. [Google Scholar] [CrossRef]
- Feng, Y. Fuzzy stochastic differential systems. Fuzzy Sets Syst. 2000, 115, 351–363. [Google Scholar] [CrossRef]
- Kim, J.H. On fuzzy stochastic differential equations. J. Korean Math. Soc. 2005, 42, 153–169. [Google Scholar] [CrossRef]
- Malinowski, M.T. Itô type stochastic fuzzy differential equations with delay. Syst. Control. Lett. 2012, 61, 692–701. [Google Scholar] [CrossRef]
- Malinowski, M.T.; Michta, M. Stochastic fuzzy differential equations with an application. Kybernetika 2011, 61, 123–143. [Google Scholar]
- Zhu, J.; Liang, Y.; Fei, W. On uniqueness and existence of solutions to stochastic set-valued differential equations with fractional Brownian motions. Syst. Sci. Control. Eng. 2020, 8, 618–627. [Google Scholar] [CrossRef]
- Arhrrabi, E.; Melliani, S.; Chadli, L.S. Existence and Stability of solutoins of fuzzy fractional stochastic differential equations with fractional Brownian Motions. Adv. Fuzzy Syst. 2021, 2021, 3948493. [Google Scholar]
- Benchohra, M.; Nieto, J.J.; Ouahab, A. Fuzzy solutions for impulsive differential equations. Commun. Appl. Anal. 2007, 11, 379–394. [Google Scholar]
- Priyadharsini, J.; Balasubramaniam, P. Existence of fuzzy fractional stochastic differential system with impulses. Comput. Appl. Math. 2020, 39, 1–21. [Google Scholar] [CrossRef]
- Bao, H.; Cao, J. Existence of the solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay. Adv. Differ. Equ. 2017, 66. [Google Scholar] [CrossRef]
- Chadha, A.; Pandey, D.N. Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay. Nonlinear Anal. 2015, 128, 149–175. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Sowmiya, S. Approximate controllability results for impulsive linear fuzzy stochastic differential equations under nonlocal conditions. Int. J. Fuzzy Log. Syst. 2015, 5, 27–36. [Google Scholar]
- Maheswari, R.; Karunanithi, S. Asymptotic stability of stochastic impulsive neutral partial functional differential equations. Int. J. Comput. Appl. 2014, 85, 23–26. [Google Scholar] [CrossRef]
- Anguraj, A.; Banupriya, K.; Baleanu, D.; Vinodkumar, A. On neutral impulsive stochastic differential equations with Poisson jumps. Adv. Differ. Equ. 2018, 290. [Google Scholar] [CrossRef]
- Xia, M.; Liu, L.; Fang, J.; Zhang, Y. Stability analysis for a class of stochastic differential equations with impulses. Mathematics 2023, 11, 1541. [Google Scholar] [CrossRef]
- Balasubramainiam, P.; Muralishankar, S. Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions. Comput. Math. Appl. 2004, 47, 1115–1122. [Google Scholar] [CrossRef]
- Arhrrabi, E.; Elomari, M.; Melliani, S.; Chadli, L.S. Existence and Uniqueness Results of Fuzzy Fractional Stochastic Differential Equations with Impulsive. In Recent Advances in Fuzzy Sets Theory, Fractional Calculus, Dynamic Systems and Optimization; Springer International Publishing: Cham, Switzerland, 2022; pp. 147–163. [Google Scholar]
- Luo, D.; Wang, X.; Caraballo, T.; Zhu, Q. Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay. Commun. Nonlinear Sci. Numer. Simul. 2023, 15, 107229. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Atangana, A.; Saadati, R. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discret. Contin. Dyn. Syst. 2021, 14, 3529–3539. [Google Scholar] [CrossRef]
- Niazi, A.U.; Iqbal, N.; Shah, R.; Wannalookkhee, F.; Nonlaopon, K. Controllability for fuzzy fractional evolution equations in credibility space. Fractal Fract. 2021, 5, 112. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Shafqat, R.; Niazi, A.U.; Awadalla, M. Local and global existence and uniqueness of solution for class of fuzzy fractional functional evolution equation. J. Funct. Spaces 2022, 2022, 7512754. [Google Scholar] [CrossRef]
- Kumar, A.; Malik, M.; Sajid, M.; Baleanu, D. Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneuos impulses. AIMS Math. 2021, 7, 2348–2369. [Google Scholar] [CrossRef]
- Didier, K.S.; Rebecca, W.O.; Rosten, M.M.; Christopher, B.O.; Patient, K.K.; Remon, M. Fuzzy stochastic differential equations driven by a fuzzy Brownian Motion. J. Appl. Math. Phys. 2022, 10, 641–655. [Google Scholar] [CrossRef]
- Seya, D.K.; Makengo, R.M.; Remon, M.; Rebecca, W.O. Fuzzy itô integral driven by a fuzzy brownian motion. J. Fuzzy Set Valued Anal. 2015, 3, 232–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalini, M.M.; Alessa, N.; Kandasamy, B.; Loganathan, K.; Rangasamy, M. On ν-Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System. Mathematics 2023, 11, 1990. https://doi.org/10.3390/math11091990
Shalini MM, Alessa N, Kandasamy B, Loganathan K, Rangasamy M. On ν-Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System. Mathematics. 2023; 11(9):1990. https://doi.org/10.3390/math11091990
Chicago/Turabian StyleShalini, Manjitha Mani, Nazek Alessa, Banupriya Kandasamy, Karuppusamy Loganathan, and Maheswari Rangasamy. 2023. "On ν-Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System" Mathematics 11, no. 9: 1990. https://doi.org/10.3390/math11091990
APA StyleShalini, M. M., Alessa, N., Kandasamy, B., Loganathan, K., & Rangasamy, M. (2023). On ν-Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System. Mathematics, 11(9), 1990. https://doi.org/10.3390/math11091990