Streamline Diffusion Finite Element Method for Singularly Perturbed 1D-Parabolic Convection Diffusion Differential Equations with Line Discontinuous Source
Abstract
:1. Introduction
2. Continuous Problem and Stability Analysis
2.1. Statement of Continuous Problem
2.2. Time Domain Discretization and Locally 1D Problems
2.3. Maximum Principle and Derivative Estimates
2.4. Truncation Error
3. Weak Formulation
4. Streamline Diffusion Finite Element Formulation
4.1. Discrete Green’s Function and Stability
- (1)
- (2)
4.2. Shishkin Type Mesh
5. Error Estimations
- (i).
- From (24), we know thatNow, taking all the intervals and summing up, we have
- (ii).
- From Equation (25), we haveIf we conduct a summation over all intervals, and derive
- (iii).
- From Equation (26), we haveIf the inequality holds, then and, as a result, . On the other hand, if the condition is not satisfied, then we have . In this scenario, it can be observed that , we obtain
- (iv).
- From Equation (27), we have
- (v).
- Now, finally from Equation (28), we haveSimplifying this, we obtain
6. Numerical Validation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, P. A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 2018, 24, 452–477. [Google Scholar] [CrossRef]
- Clavero, C.; Gracia, J.L.; Jorge, J.C. High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial. Differ. Equ. 2005, 21, 149–169. [Google Scholar] [CrossRef]
- Avijit, D.; Natesan, S. SDFEM for singularly perturbed parabolic initial-boundary-value problems on equidistributed grids. Calcolo 2020, 57, 23. [Google Scholar] [CrossRef]
- Yuzbasi, S.; Sahin, N. Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method. Appl. Math. Comput. 2013, 220, 305–315. [Google Scholar]
- Izadi, M.; Yuzbasi, S. A hybrid approximation scheme for 1-D singularly perturbed parabolic convection-diffusion problems. Math. Commun. 2022, 27, 47–62. [Google Scholar]
- O’Riordana, E.; Shishkin, G.I. Singularly perturbed parabolic problems with non-smooth data. J. Comput. Appl. Math. 2004, 166, 233–245. [Google Scholar] [CrossRef]
- Chandru, M.; Das, P.; Ramos, H. Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Methods Appl. Sci. 2018, 41, 5359–5387. [Google Scholar] [CrossRef]
- Bullo, T.A.; Degla, G.A.; Duressa, G.F. Uniformly convergent higher-order finite difference scheme for singularly perturbed parabolic problems with non-smooth data. J. Appl. Math. Comput. Mech. 2021, 20, 5–16. [Google Scholar] [CrossRef]
- Clavero, C.; Gracia, J.L.; Shishkin, G.I.; Shishkina, L.P. An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers. J. Comput. Appl. Math. 2017, 318, 634–645. [Google Scholar] [CrossRef]
- Gracia, J.L.; O’Riordan, E. A singularly perturbed parabolic problem with a layer in the initial condition. Appl. Math. Comput. 2012, 219, 498–510. [Google Scholar] [CrossRef]
- Clavero, C.; Jorge, J.C. A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems. Appl. Numer. Math. 2023, 183, 317–332. [Google Scholar] [CrossRef]
- Cheng, Y.; Mei, Y.; Roos, H.-G. The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems. Comput. Math. Appl. 2022, 117, 245–256. [Google Scholar] [CrossRef]
- Mohammed, M. Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions. Symmetry 2022, 18, 1722. [Google Scholar] [CrossRef]
- Roos, H.G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mukherjee, K.; Natesan, S. Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems. Computing 2009, 84, 209–230. [Google Scholar] [CrossRef]
- Das, A.; Natesan, S. Uniformly convergent numerical method for singularly perturbed 2D delay parabolic convection–difusion problems on Bakhvalov–Shishkin mesh. Int. J. Math. Model. Numer. Optim 2018, 8, 305–330. [Google Scholar]
- Hughes, T.J.R.; Brooks, A.N. A multidimensional upwind scheme with no crosswind difusion. Finite Elem. Methods Convect. Domin. Flows 1979, 34, 19–35. [Google Scholar]
- Roos, H.G.; Zarin, H. The streamline-difusion method for a convection–difusion problem with a point source. J. Comput. Appl. Math. 2003, 150, 109–128. [Google Scholar] [CrossRef]
- Ghiocel Groza, H.; Pop, N. A Numerical Method for Solving of the Boundary Value Problems for Ordinary Differential Equations. Result Math. 2009, 53, 295–302. [Google Scholar] [CrossRef]
- Brayanov, I.A. Numerical solution of a two-dimensional singularly perturbed reaction-diffusion problem with discontinuous coefficients. Appl. Math. Comput. 2006, 182, 631–643. [Google Scholar] [CrossRef]
- Farrell, P.A.; Hegarty, A.F.; Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Global Maximum Norm Parameter-Uniform Numerical Method for a Singularly Perturbed Convection-Diffusion Problem with Discontinuous Convection Coefficient. Math. Comput. Model. 2004, 40, 1375–1392. [Google Scholar] [CrossRef]
- Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Fitted Numerical Methods for Singularly Perturbation Problems, Revised ed.; World Scientific: Singapore, 1996. [Google Scholar]
- Roos, H.G.; Uzelac, Z. The SDFEM for a convection–difusion problem with two small parameters. Comput. Methods Appl. Math. 2003, 3, 443–458. [Google Scholar] [CrossRef]
- Andreev, V.B. The Green function and a priori estimates of solutions of monotone three-point singularly perturbed fnite-diference schemes. Differ. Equ. 2001, 37, 923–933. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J. An optimal streamline difusion fnite element method for a singularly perturbed problem. Comput. Methods Am. Math. 2005, 383, 191–201. [Google Scholar]
- Liu, L.L.; Leng, H.; Long, G. Analysis of the SDFEM for singularly perturbed diferential-difference equations. Calcolo 2018, 55, 23. [Google Scholar] [CrossRef]
- Roos, H.G.; LinB, T. Sufficient conditions for uniform convergence on layer-adapted grids. Computing 1999, 63, 27–45. [Google Scholar] [CrossRef]
M | N (Number of Grid Points) | |||||||
---|---|---|---|---|---|---|---|---|
↓ | ↓ | |||||||
50 | 1.0843 | 3.1740 | 1.2410 | 4.0043 | 1.2979 | 3.6024 | 1.0865 | |
100 | 1.0286 | 2.6681 | 1.0315 | 3.7978 | 1.5062 | 6.2557 | 2.6478 | |
50 | 1.1120 | 2.8842 | 1.1237 | 3.5721 | 1.1214 | 3.9296 | 1.6141 | |
100 | 1.0748 | 2.8066 | 1.1374 | 4.6676 | 1.8575 | 8.9909 | 4.2970 | |
50 | 1.1289 | 2.7113 | 1.0495 | 3.2872 | 1.2105 | 4.5429 | 1.9634 | |
100 | 1.1002 | 2.9689 | 1.2033 | 5.0398 | 2.4171 | 1.1748 | 5.8837 | |
50 | 1.1361 | 2.6175 | 1.0085 | 3.2652 | 1.2404 | 5.0069 | 2.1944 | |
100 | 1.1175 | 3.0602 | 1.2410 | 5.3361 | 2.5656 | 1.3340 | 6.5985 | |
50 | 1.1395 | 2.5686 | 9.8700 | 3.3070 | 1.2620 | 5.1495 | 2.3576 | |
100 | 1.1263 | 3.1082 | 1.2609 | 5.5213 | 2.6932 | 1.3756 | 7.0938 | |
50 | 1.1411 | 2.5438 | 9.7602 | 3.3285 | 1.2731 | 5.2436 | 2.4101 | |
100 | 1.1307 | 3.1327 | 1.2711 | 5.6167 | 2.7588 | 1.4141 | 7.2555 | |
50 | 1.1418 | 2.5312 | 9.7046 | 3.3393 | 1.2787 | 5.2911 | 2.4429 | |
100 | 1.1329 | 3.1451 | 1.2763 | 5.6650 | 2.7921 | 1.4321 | 7.3508 | |
50 | 1.1422 | 2.5249 | 9.6767 | 3.3448 | 1.2815 | 5.3150 | 2.4594 | |
100 | 1.1340 | 3.1514 | 1.2789 | 5.6894 | 2.8088 | 1.4416 | 7.3966 | |
50 | 1.1424 | 2.5217 | 9.6627 | 3.3475 | 1.2829 | 5.3270 | 2.4679 | |
100 | 1.1345 | 3.1545 | 1.2803 | 5.7016 | 2.8172 | 1.4469 | 7.4190 | |
50 | 1.1425 | 2.5201 | 9.6557 | 3.3489 | 1.2836 | 5.3330 | 2.4725 | |
100 | 1.1348 | 3.1561 | 1.2809 | 5.7077 | 2.8214 | 1.4496 | 7.4301 | |
50 | 1.1425 | 3.1740 | 1.2410 | 4.0043 | 1.2979 | 5.3330 | 2.4725 | |
100 | 1.1348 | 3.1561 | 1.2809 | 5.7077 | 2.8214 | 1.4496 | 7.4301 | |
50 | 1.8478 | 1.3548 | 1.6319 | 1.6253 | 1.2832 | 1.1089 | - | |
100 | 1.8462 | 1.3010 | 1.1662 | 1.0165 | 9.6076 | 9.6419 | - |
M | N (Number of Grid Points) | |||||||
---|---|---|---|---|---|---|---|---|
↓ | ↓ | |||||||
50 | 2.1266 | 1.3349 | 7.0424 | 3.3712 | 1.5223 | 7.1724 | 3.4900 | |
100 | 2.8109 | 2.2380 | 1.3696 | 7.0987 | 3.3312 | 1.5960 | 7.8452 | |
50 | 3.5020 | 2.2511 | 1.2890 | 6.7146 | 3.3507 | 1.6344 | 7.8856 | |
100 | 4.5196 | 3.8586 | 2.6099 | 1.4770 | 7.6575 | 3.8040 | 1.8516 | |
50 | 4.4469 | 3.0061 | 1.7211 | 9.0480 | 4.6009 | 2.3068 | 1.1432 | |
100 | 5.8200 | 5.2658 | 3.6716 | 2.1077 | 1.1126 | 5.6420 | 2.8120 | |
50 | 5.0400 | 3.4278 | 1.9902 | 1.0568 | 5.3720 | 2.7130 | 1.3529 | |
100 | 6.6504 | 6.0947 | 4.3599 | 2.5668 | 1.3564 | 6.9369 | 3.4832 | |
50 | 5.3763 | 3.6934 | 2.1445 | 1.1366 | 5.8382 | 2.9379 | 1.4749 | |
100 | 7.1658 | 6.5915 | 4.7996 | 2.8410 | 1.5157 | 7.7503 | 3.8981 | |
50 | 5.5558 | 3.8344 | 2.2246 | 1.1819 | 6.0637 | 3.0661 | 1.5383 | |
100 | 7.4477 | 6.8558 | 5.0407 | 3.0050 | 1.6044 | 8.2210 | 4.1429 | |
50 | 5.6486 | 3.9071 | 2.2677 | 1.2054 | 6.1870 | 3.1290 | 1.5730 | |
100 | 7.6104 | 6.9976 | 5.1666 | 3.0910 | 1.6535 | 8.4716 | 4.2767 | |
50 | 5.6958 | 3.9441 | 2.2904 | 1.2175 | 6.2500 | 3.1619 | 1.5897 | |
100 | 7.6927 | 7.0691 | 5.2310 | 3.1350 | 1.6788 | 8.6049 | 4.3442 | |
50 | 5.7196 | 3.9627 | 2.3017 | 1.2236 | 6.2816 | 3.1785 | 1.5984 | |
100 | 7.7341 | 7.1050 | 5.2636 | 3.1573 | 1.6915 | 8.6729 | 4.3793 | |
50 | 5.7315 | 3.9720 | 2.3074 | 1.2267 | 6.2975 | 3.1868 | 1.6027 | |
100 | 7.7548 | 7.1230 | 5.2803 | 3.1685 | 1.6980 | 8.7074 | 4.3971 | |
50 | 5.7315 | 3.9720 | 2.3074 | 1.2267 | 6.2975 | 3.1868 | 1.6027 | |
100 | 7.7548 | 7.1230 | 5.2803 | 3.1685 | 1.6980 | 8.7074 | 4.3971 | |
50 | 5.2904 | 7.8358 | 9.1156 | 9.6189 | 9.8265 | 9.9160 | - | |
100 | 1.2260 | 4.3187 | 7.3683 | 8.9999 | 9.6349 | 9.8568 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soundararajan, R.; Subburayan, V.; Wong, P.J.Y. Streamline Diffusion Finite Element Method for Singularly Perturbed 1D-Parabolic Convection Diffusion Differential Equations with Line Discontinuous Source. Mathematics 2023, 11, 2034. https://doi.org/10.3390/math11092034
Soundararajan R, Subburayan V, Wong PJY. Streamline Diffusion Finite Element Method for Singularly Perturbed 1D-Parabolic Convection Diffusion Differential Equations with Line Discontinuous Source. Mathematics. 2023; 11(9):2034. https://doi.org/10.3390/math11092034
Chicago/Turabian StyleSoundararajan, R., V. Subburayan, and Patricia J. Y. Wong. 2023. "Streamline Diffusion Finite Element Method for Singularly Perturbed 1D-Parabolic Convection Diffusion Differential Equations with Line Discontinuous Source" Mathematics 11, no. 9: 2034. https://doi.org/10.3390/math11092034
APA StyleSoundararajan, R., Subburayan, V., & Wong, P. J. Y. (2023). Streamline Diffusion Finite Element Method for Singularly Perturbed 1D-Parabolic Convection Diffusion Differential Equations with Line Discontinuous Source. Mathematics, 11(9), 2034. https://doi.org/10.3390/math11092034