Mathematical Design and Analysis of Three-Phase Inverters: Different Wide Bandgap Semiconductor Technologies and DC-Link Capacitor Selection
Abstract
:1. Introduction
2. Drive System Comparison with Si IGBT and SiC MOSFET
2.1. Electric Motor
2.2. Three-Phase Two-Level Inverter
2.3. SVPWM and Inverter Losses
2.4. Drive System Performance Comparsion with Si IGBT and SiC MOSFET
3. Design of the DC-Link Capacitor
3.1. Analysis of Voltage Ripple
3.2. Analysis of Current Ripple
4. Results and Discussion
4.1. Optimal DC-Link Capacitance
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torres, R.A.; Dai, H.; Jahns, T.M.; Sarlioglu, B. Operation and Analysis of Current-Source Inverters using Dual-Gate Four-Quadrant Wide-Bandgap Power Switches. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 2353–2360. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Todd, R.; Forsyth, A.J. Predicting SiC MOSFET Behavior under Hard-Switching, Soft-Switching, and False Turn-on Conditions. IEEE Trans. Power Electron. 2017, 64, 9001–9011. [Google Scholar] [CrossRef]
- Roy, S.K.; Basu, K. Analytical Estimation of Turn on Switching Loss of SiC mosfet and Schottky Diode Pair from Datasheet Parameters. IEEE Trans. Power Electron. 2019, 34, 9118–9130. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, Y.; Gao, Y. A Novel Active Gate Driver for Improving Switching Performance of High-Power SiC MOSFET Modules. IEEE Trans. Power Electron. 2019, 34, 7775–7787. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, J.; Huang, A.Q.; Agarwal, A. Comparisons of SiC MOSFET and Si IGBT Based Motor Drive Systems. In Proceedings of the IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23–27 September 2007; pp. 331–335. [Google Scholar] [CrossRef]
- Perdikakis, W.; Scott, M.; Yost, K.J.; Kitzmiller, C.; Hall, B.; Sheets, K.A. Comparison of Si and SiC EMI and Efficiency in a Two-level Aerospace Motor Drive Application. IEEE Trans. Transp. Electrif. 2020, 6, 1401–1411. [Google Scholar] [CrossRef]
- Fuentes, C.D.; Müller, M.; Bernet, S.; Kouro, S. SiC-MOSFET or Si-IGBT: Comparison of Design and Key Characteristics of a 690 V Grid-Tied Industrial Two-Level Voltage Source Converter. Energies 2021, 14, 3054. [Google Scholar] [CrossRef]
- Abdalgader, I.A.S.; Kivrak, S.; Özer, T. Power Performance Comparison of SiC-IGBT and Si-IGBT Switches in a Three-Phase Inverter for Aircraft Applications. Micromachines 2022, 13, 313. [Google Scholar] [CrossRef] [PubMed]
- Wolski, K.; Zdanowski, M.; Rabkowski, J. High-Frequency SiC-Based Inverters with Input Stages Based on Quasi-Z-Source and Boost Topologies—Experimental Comparison. IEEE Trans. Power Electron. 2019, 34, 9471–9478. [Google Scholar] [CrossRef]
- Trochimiuk, P.; Kopacz, R.; Frac, K.; Rabkowski, J. Medium voltage power switch in silicon carbide—A comparative study. IEEE Access 2022, 10, 26849–26858. [Google Scholar] [CrossRef]
- Mocevic, S.; Yu, J.; Fan, B.; Sun, K.; Xu, Y.; Stewart, J.; Rong, Y.; Song, H.; Mitrovic, V.; Yan, N.; et al. Design of a 10 kV SiC MOSFET-based high-density high-efficiency modular medium-voltage power converter. iEnergy 2022, 1, 100–113. [Google Scholar] [CrossRef]
- Yang, F.; Wang, L.; Kong, H.; Zhu, M.; Liu, X.; Lu, X.; Qin, M.; Zhang, T.; Gan, Y.; Jia, L. Compact-Interleaved Packaging Method of Power Module with Dynamic Characterization of 4H-SiC MOSFET and Development of Power Electronic Converter at Extremely High Junction Temperature. IEEE Trans. Power Electron. 2023, 38, 417–434. [Google Scholar] [CrossRef]
- Koseki, K.; Yonezawa, Y.; Mizushima, T.; Matsunaga, S.; Iizuka, Y.; Yamaguchi, H. Dynamic Behavior of a Medium-Voltage N-Channel SiC-IGBT With Ultrafast Switching Performance of 300 kV/µs. IEEE Trans. Ind. Appl. 2018, 54, 3558–3565. [Google Scholar] [CrossRef]
- Santos, V.D.; Cougo, B.; Roux, N.; Sareni, B.; Revol, B.; Carayon, J. Trade-off between losses and EMI issues in three-phase SiC inverters for aircraft applications. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI), Washington, DC, USA, 7–11 August 2017; pp. 55–60. [Google Scholar] [CrossRef]
- Oswald, N.; Anthony, P.; McNeill, N.; Stark, B.H. An Experimental Investigation of the Tradeoff between Switching Losses and EMI Generation with Hard-Switched All-Si, Si-Sic, and All-Sic Device Combinations. IEEE Trans. Power Electron. 2014, 29, 2393–2407. [Google Scholar] [CrossRef]
- Han, D.; Li, S.; Wu, Y.; Choi, W.; Sarlioglu, B. Comparative Analysis on Conducted CM EMI Emission of Motor Drives: WBG Versus Si Devices. IEEE Trans. Power Electron. 2017, 64, 8353–8363. [Google Scholar] [CrossRef]
- Vujacic, M.; Dordevic, O.; Grandi, G. Evaluation of DC-Link Voltage Switching Ripple in Multiphase PWM Voltage Source Inverters. IEEE Trans. Power Electron. 2020, 35, 3478–3490. [Google Scholar] [CrossRef]
- Sun, J.; Lin, C. Calculation and spectral analysis of DC-link current for three phase PWM inverter. In Proceedings of the IEEE International Symposium on Power Electronics (Ee), Novi Sad, Serbia, 27–30 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, F.; Burgos, R.; Lai, R.; Boroyevich, D. DC-link ripple current reduction for paralleled three-phase voltage-source converters with interleaving. IEEE Trans. Power Electron. 2011, 26, 1741–1753. [Google Scholar] [CrossRef]
- Arrozy, J.; Retianza, D.V.; Duarte, J.L.; Ilhan Caarls, E.; Huisman, H. Influence of Dead-Time on the Input Current Ripple of Three-Phase Voltage Source Inverter. Energies 2023, 16, 688. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Chen, Q.; Chen, Z.; Geng, X.; Lin, K. Improved PWM Strategies to Mitigate Dead-Time Distortion in Three-Phase Voltage Source Converter. IEEE Trans. Power Electron. 2022, 37, 14692–14705. [Google Scholar] [CrossRef]
- Raab, S.; Krämer, A.; Ackva, A. Determination of RMS current load on the DC-link capacitor of voltage source converters using direct current control. IEEE Trans. Power Electron. 2021, 36, 968–977. [Google Scholar] [CrossRef]
- Tanaka, T.; Wang, H.; Blaabjerg, F. A dc-link capacitor voltage ripple reduction method for a modular multilevel cascade converter with single delta bridge cells. IEEE Trans. Ind. Appl. 2019, 55, 6115–6126. [Google Scholar] [CrossRef]
- Sau, S.; Fernandes, B.G. Modular multilevel converter based variable speed drive with reduced capacitor ripple voltage. IEEE Trans. Ind. Electron. 2019, 66, 3412–3421. [Google Scholar] [CrossRef]
- Guo, J.; Ye, J.; Emadi, A. DC-Link Current and Voltage Ripple Analysis Considering Antiparallel Diode Reverse Recovery in Voltage Source Inverters. IEEE Trans. Power Electron. 2018, 33, 5171–5180. [Google Scholar] [CrossRef]
- Pei, X.; Zhou, W.; Kang, Y. Analysis and Calculation of DC-Link Current and Voltage Ripples for Three-Phase Inverter with Unbalanced Load. IEEE Trans. Power Electron. 2015, 30, 5401–5412. [Google Scholar] [CrossRef]
- Vujacic, M.; Dordevic, O.; Mandrioli, R.; Grandi, G. DC-link low-frequency current and voltage ripple analysis in multiphase voltage source inverters with unbalanced load. IET Electr. Power Appl. 2022, 16, 300–314. [Google Scholar] [CrossRef]
- Taha, W.; Azer, P.; Poorfakhraei, A.; Dhale, S.; Emadi, A. Comprehensive Analysis and Evaluation of DC-Link Voltage and Current Ripples in Symmetric and Asymmetric Two-Level Six-Phase Voltage Source Inverters. IEEE Trans. Power Electron. 2023, 38, 2215–2229. [Google Scholar] [CrossRef]
- Mannen, T.; Fujita, H. A DC capacitor voltage control method for active power filters using modified reference including the theoretically derived voltage ripple. IEEE Trans. Ind. Appl. 2016, 52, 4179–4187. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Wang, T. Analysis of the DC-Link Voltage Ripple for the Three-Phase Voltage Source Converter under Nonlinear Output Current. Energies 2022, 15, 2892. [Google Scholar] [CrossRef]
- Safayet, A.; Islam, M.S.; Sebastian, T. Comprehensive Analysis for DC-Link Capacitor Sizing for a Three-Phase Current Controlled Voltage Source Inverter. IEEE Trans. Ind. Appl. 2022, 58, 4248–4260. [Google Scholar] [CrossRef]
- Tawfiq, K.B.; Ibrahim, M.N.; EL-Kholy, E.E.; Sergeant, P. Construction of Synchronous Reluctance Machines with Combined Star-Pentagon Configuration Using Standard Three-Phase Stator Frames. IEEE Trans. Ind. Electron. 2022, 69, 7582–7595. [Google Scholar] [CrossRef]
- Available online: https://www.farnell.com/datasheets/43922.pdf (accessed on 1 March 2023).
- Available online: https://www.mitsubishielectric.com/semiconductors/php/eTypeNoProfile.php?TYPENO=BM040N120K&FOLDER=/product/powermodule/sic-mosfet/ (accessed on 1 March 2023).
- Tawfiq, K.B.; Abdou, A.F.; EL-Kholy, E.E.; Shokralla, S.S. A modified space vector modulation algorithm for a matrix converter with lower total harmonic distortion. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Tawfiq, K.B.; Ibrahim, M.N.; EL-Kholy, E.E.; Sergeant, P. Comparative Analysis of Refurbishing Methods of Three-Phase Synchronous Reluctance Machines to Five-Phase with Minimum Cost. IEEE Trans. Ind. Appl. 2021, 57, 6007–6022. [Google Scholar] [CrossRef]
- Wang, H.; Blaabjerg, F. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview. IEEE Trans. Ind. Appl. 2014, 50, 3569–3578. [Google Scholar] [CrossRef]
- Available online: https://product.tdk.com/system/files/dam/doc/product/capacitor/film/mkp_mfp/data_sheet/20/20/db/fc_2009/mkp_b32774_778.pdf (accessed on 1 March 2023).
Si IGBT | SiC MOSFET | |
---|---|---|
Switching losses (W) | 141.41 | 19.61 |
Conduction losses (W) | 53.53 | 21.74 |
Motor losses (W) | 290.90 | 290.90 |
Total losses for drive (W) | 485.84 | 341.27 |
Drive system efficiency (%) | 91.76 | 94.22 |
Ceramic Capacitors | Film Capacitors | Electrolytic Capacitors | |
---|---|---|---|
Capacitance | inferior | medium | preferable |
Voltage rating | inferior | preferable | medium |
Ripple current | medium | preferable | inferior |
Frequency | preferable | preferable | inferior |
Reliability | preferable | preferable | inferior |
Temperature | preferable | inferior | medium |
Cost | inferior | Medium | preferable |
Si IGBT | SiC MOSFET | |||
---|---|---|---|---|
Switching Frequency | At 15 kHz | At 6.6 kHz | At 15 kHz | At 6.6 kHz |
Switching losses (W) | 141.41 | 63.68 | 19.61 | 11.86 |
Conduction losses (W) | 53.53 | 53.57 | 21.74 | 21.74 |
Motor losses (W) | 290.90 | 290.90 | 290.90 | 290.90 |
Total losses for drive (W) | 485.84 | 408.15 | 341.27 | 324.5 |
Drive system efficiency (%) | 91.76 | 92.98 | 94.22 | 94.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfiq, K.B.; Mansour, A.S.; Sergeant, P. Mathematical Design and Analysis of Three-Phase Inverters: Different Wide Bandgap Semiconductor Technologies and DC-Link Capacitor Selection. Mathematics 2023, 11, 2137. https://doi.org/10.3390/math11092137
Tawfiq KB, Mansour AS, Sergeant P. Mathematical Design and Analysis of Three-Phase Inverters: Different Wide Bandgap Semiconductor Technologies and DC-Link Capacitor Selection. Mathematics. 2023; 11(9):2137. https://doi.org/10.3390/math11092137
Chicago/Turabian StyleTawfiq, Kotb B., Arafa S. Mansour, and Peter Sergeant. 2023. "Mathematical Design and Analysis of Three-Phase Inverters: Different Wide Bandgap Semiconductor Technologies and DC-Link Capacitor Selection" Mathematics 11, no. 9: 2137. https://doi.org/10.3390/math11092137
APA StyleTawfiq, K. B., Mansour, A. S., & Sergeant, P. (2023). Mathematical Design and Analysis of Three-Phase Inverters: Different Wide Bandgap Semiconductor Technologies and DC-Link Capacitor Selection. Mathematics, 11(9), 2137. https://doi.org/10.3390/math11092137