CDE’ Inequality on Graphs with Unbounded Laplacian
Abstract
:1. Introduction
1.1. Setup and Notation
- (1)
- For any , ;
- (2)
- For any , .
1.2. Main Results
- (1)
- G satisfies with .
- (2)
- For any , ,
- (3)
- For any , ,
- (1)
- G satisfies with and .
- (2)
- For any , ,
- (3)
- For any , ,
2. Preliminaries
3. Proof of Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakry, D.; Emery, M. Diffusions hypercontractives [Hypercontractive diffusions]. In Seminaire de Probabilites XIX, 1983/84; Lecture Notes in Mathematics book series; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1123, pp. 177–206. (In French) [Google Scholar]
- Wang, F.Y. Equivalent semigroup properties for curvature-dimension condition. Bull. Sci. Math. 2011, 135, 803–815. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, S. Equivalent properties of CD inequalities on graphs. Acta Math. Sin. Chin. Ser. 2018, 61, 431–440. [Google Scholar]
- Lin, Y.; Yau, S.-T. Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 2010, 17, 343–356. [Google Scholar] [CrossRef]
- Weber, F.; Zacher, R. The entropy method under curvature-dimension conditions in the spirit of Bakry-Émery in the discrete setting of Markov chains. J. Funct. Anal. 2021, 281, 109061. [Google Scholar] [CrossRef]
- Bakry, D.; Gentil, I.; Ledoux, M. Analysis and Geometry of Markov Diffusion Operators; Grundlehren der Mathematischen Wissenschaften Fundamental [Principles of Mathematical Sciences]; Springer: Cham, Switzerland, 2014; Volume 348. [Google Scholar]
- Liu, S.P.; Peyerimhoff, N. Eigenvalue ratios of nonnegatively curved graphs. Combin. Probab. Comput. 2018, 27, 829–850. [Google Scholar] [CrossRef]
- Gong, C.; Lin, Y. Equivalent properties for CD inequalities on graphs with unbounded Laplacians. Chin. Ann. Math. Ser. B 2017, 38, 1059–1070. [Google Scholar] [CrossRef]
- Hua, B.; Lin, Y. Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 2017, 306, 279–302. [Google Scholar] [CrossRef]
- Bauer, F.; Horn, P.; Lin, Y.; Lippner, G.; Mangoubi, D.; Yau, S.-T. Li-Yau inequality on graphs. J. Differ. Geom. 2015, 99, 359–405. [Google Scholar] [CrossRef]
- Horn, P.; Lin, Y.; Liu, S.; Yau, S.-T. Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs. J. Reine Angew. Math. 2019, 757, 89–130. [Google Scholar] [CrossRef]
- Münch, F. Remarks on curvature dimension conditions on graphs. Calc. Var. Part. Differ. Equ. 2017, 56, 11. [Google Scholar] [CrossRef]
- Hua, B. Ancient caloric functions on graphs with unbounded Laplacians. Int. Math. Res. Not. IMRN 2021, 4, 3056–3077. [Google Scholar] [CrossRef]
- Keller, M.; Lenz, D. Unbounded Laplacians on graphs:basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 2010, 5, 198–224. [Google Scholar] [CrossRef]
- Keller, M.; Lenz, D. Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 2012, 666, 189–223. [Google Scholar] [CrossRef]
- Liu, Y. Hamilton inequality for unbounded Laplacians on graphs. Differ. Geom. Appl. 2021, 76, 101758. [Google Scholar] [CrossRef]
- Gong, C.; Lin, Y.; Liu, S.; Yau, S.-T. Li-Yau inequality for unbounded Laplacian on graphs. Adv. Math. 2019, 357, 106822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, D.; Gong, C. CDE’ Inequality on Graphs with Unbounded Laplacian. Mathematics 2023, 11, 2138. https://doi.org/10.3390/math11092138
Hong D, Gong C. CDE’ Inequality on Graphs with Unbounded Laplacian. Mathematics. 2023; 11(9):2138. https://doi.org/10.3390/math11092138
Chicago/Turabian StyleHong, Desheng, and Chao Gong. 2023. "CDE’ Inequality on Graphs with Unbounded Laplacian" Mathematics 11, no. 9: 2138. https://doi.org/10.3390/math11092138
APA StyleHong, D., & Gong, C. (2023). CDE’ Inequality on Graphs with Unbounded Laplacian. Mathematics, 11(9), 2138. https://doi.org/10.3390/math11092138