Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix
Abstract
:1. Introduction
2. Some Known Definitions and Results
3. Expressions for
4. Expressions for
5. Special Cases
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Goodman, N.R. Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Stat. 1963, 34, 152–177. [Google Scholar] [CrossRef]
- James, A.T. Distributions of matrix variate and latent roots derived from normal samples. Ann. Math. Stat. 1964, 35, 475–501. [Google Scholar] [CrossRef]
- Khatri, C.G. Classical statistical analysis based on a certain multivariate complex Gaussian distribution. Ann. Math. Stat. 1965, 36, 98–114. [Google Scholar] [CrossRef]
- Khatri, C.G. On certain distribution problems based on positive definite quadratic functions in normal vectors. Ann. Math. Stat. 1966, 37, 468–479. [Google Scholar] [CrossRef]
- Krishnaiah, P.R. Some recent developments on complex multivariate distributions. J. Multivar. Anal. 1976, 6, 1–30. [Google Scholar] [CrossRef]
- Srivastava, M.S. On the complex Wishart distribution. Ann. Math. Stat. 1965, 36, 313–315. [Google Scholar] [CrossRef]
- Shaman, P. The inverted complex Wishart distribution and its application to spectral estimation. J. Multivar. Anal. 1980, 10, 51–59. [Google Scholar] [CrossRef]
- Tan, W.Y. Some distribution theory associated with complex Gaussian distribution. Tamkang J. 1968, 7, 263–302. [Google Scholar]
- Alfano, G.; Tulino, A.; Lozano, A.; Verdú, S. Random Matrix Transforms and Applications via Non-Asymptotic Eigenanalysis; International Zurich Seminar on Communications: Zurich, Switzerland, 2006; pp. 18–21. [Google Scholar]
- Carmeli, M. Statistical Theory and Random Matrices in Physics; Marcel Dekker: New York, NY, USA, 1983. [Google Scholar]
- Cunden, F.D.; Dahlqvist, A.; O’Connell, N. Integer moments of complex Wishart matrices and Hurwitz numbers. Ann. Inst. Henri Poincaré D 2021, 8, 243–268. [Google Scholar] [CrossRef]
- Deng, X.; López-Martínez, C.; Chen, J.; Han, P. Statistical Modeling of Polarimetric SAR Data: A Survey and Challenges. Remote Sens. 2008, 9, 348. [Google Scholar] [CrossRef]
- Ermolova, N.Y.; Tirkkonen, O. Distribution of diagonal elements of a general central complex Wishart matrix. IEEE Commun. Lett. 2012, 16, 1373–1376. [Google Scholar] [CrossRef]
- Gomez, L.; Alvarez, L.; Mazorra, L.; Frery, A.C. Classification of complex Wishart matrices with a diffusion-reaction system guided by stochastic distances. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20150118. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Eigenvalue statistics for the sum of two complex Wishart matrices. EPL 2014, 107, 60002. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Skriver, H.; Conradsen, K. Complex Wishart Distribution Based Analysis of Polarimetric Synthetic Aperture Radar Data. In Proceedings of the 2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–6. [Google Scholar]
- Shakil, M.; Ahsanullah, M. Some inferences on the distribution of the Demmel condition number of complex Wishart matrices. Spec. Matrices 2017, 5, 127–138. [Google Scholar] [CrossRef]
- Tague, J.A.; Caldwell, C.I. Expectations of useful complex Wishart forms. Multidimens. Syst. Signal Process. 1994, 5, 263–279. [Google Scholar] [CrossRef]
- Tralli, V.; Conti, A. Noncentral complex Wishart matrices: Moments and correlation of minors. Random Matrices Theory Appl. 2022, 11, 2250009. [Google Scholar] [CrossRef]
- Andersen, H.H.; Højbjerre, M.; Sørensen, D.; Eriksen, P.S. Linear and Graphical Models; For the Multivariate Complex Normal Distribution, Lecture Notes in Statistics, 101; Springer: New York, NY, USA, 1995. [Google Scholar]
- Gupta, A.K.; Nagar, D.K. Matrix Variate Distributions; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Nagar, D.K.; Gupta, A.K.; Sánchez, L.E. A class of integral identities with Hermitian matrix argument. Proc. Am. Math. Soc. 2006, 134, 3329–3341. [Google Scholar] [CrossRef]
- Letac, G.; Maasam, H. The noncentral Wishart as an exponential family, and its moments. J. Multivar. Anal. 2008, 99, 1393–1417. [Google Scholar] [CrossRef]
- Nagar, D.K.; Roldán-Correa, A.; Gupta, A.K. Extended matrix variate gamma and beta functions. J. Multivar. Anal. 2013, 122, 53–69. [Google Scholar] [CrossRef]
- Di Nardo, E. On a symbolic representation of non-central Wishart random matrices with applications. J. Multivar. Anal. 2014, 125, 121–135. [Google Scholar] [CrossRef]
- Dharmawansa, P.; McKay, M.R. Extreme eigenvalue distributions of some complex correlated non-central Wishart and gamma-Wishart random matrices. J. Multivar. Anal. 2011, 102, 847–868. [Google Scholar] [CrossRef]
- Hillier, G.; Kan, R. Properties of the inverse of a noncentral Wishart matrix. Econom. Theory 2022, 38, 1092–1116. [Google Scholar] [CrossRef]
- Wahba, G. Cross-Spectral Distribution Theory for Mixed Spectra and Estimation of Prediction Filter Coefficients. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1966. [Google Scholar]
- Sultan, S.A.; Tracy, D.S. Moments of the complex Wishart distribution. Int. J. Math. Stat. Sci. 1999, 8, 51–62. [Google Scholar]
- Maiwald, D.; Kraus, D. Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices. IEE Proc.-Radar Sonar Navig. 2000, 147, 162–168. [Google Scholar] [CrossRef]
- Graczyk, P.; Letac, G.; Massam, H. The complex Wishart distribution and the symmetric group. Ann. Stat. 2003, 31, 287–309. [Google Scholar] [CrossRef]
- Nagar, D.K.; Gupta, A.K. Expectations of functions of complex Wishart matrix. Acta Appl. Math. 2011, 113, 265–288. [Google Scholar] [CrossRef]
- Pielaszkiewicz, J.; von Rosen, D.; Singull, M. On , where . Commun. Stat.—Theory Methods 2017, 46, 2990–3005. [Google Scholar] [CrossRef]
- Holgersson, T.; Pielaszkiewicz, J. A Collection of Moments of the Wishart Distribution. In Recent Developments in Multivariate and Random Matrix Analysis; Holgersson, T., Singull, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 147–162. [Google Scholar]
- Khatri, C.G. On the moments of traces of two matrices in three situations for complex multivariate normal populations. Sankhyā Indian J. Stat. Ser. A 1970, 32, 65–80. [Google Scholar]
- Khatri, C.G.; Khattree, R.; Gupta, R.D. On a class of orthogonal invariant and residual independent matrix distributions. Sankhyā Indian J. Stat. Ser. B 1991, 53, 1–10. [Google Scholar]
- Gupta, A.K.; Nagar, D.K.; Vélez-Carvajal, A.M. Unitary invariant and residual independent matrix distributions. Comput. Appl. Math. 2009, 28, 63–86. [Google Scholar] [CrossRef]
a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagar, D.K.; Roldán-Correa, A.; Nadarajah, S. Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix. Mathematics 2023, 11, 2162. https://doi.org/10.3390/math11092162
Nagar DK, Roldán-Correa A, Nadarajah S. Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix. Mathematics. 2023; 11(9):2162. https://doi.org/10.3390/math11092162
Chicago/Turabian StyleNagar, Daya K., Alejandro Roldán-Correa, and Saralees Nadarajah. 2023. "Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix" Mathematics 11, no. 9: 2162. https://doi.org/10.3390/math11092162
APA StyleNagar, D. K., Roldán-Correa, A., & Nadarajah, S. (2023). Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix. Mathematics, 11(9), 2162. https://doi.org/10.3390/math11092162