Truncated Moments for Heavy-Tailed and Related Distribution Classes
Abstract
:1. Introduction
2. Regularity Classes
3. Main Results
- (i)
- , ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- , , .
- (i)
- , ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- , , .
4. Auxiliary Lemmas
5. Proofs of the Main Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karamata, J. Sur un mode de croissance régulière. Théorèmes fundamentoux. Bulletin de la Société Mathématique de France 1933, 61, 55–62. [Google Scholar]
- Seneta, E. Regularly Varying Functions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 508. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Resnick, S.I. Extreme Values, Regular Variation and Point Process; Springer: New York, NY, USA, 1987. [Google Scholar]
- Foss, S.; Korshunov, D.; Zachary, S. An Introduction to Heavy-Tailed and Subexponential Distributions, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Samorodnitsky, G. Stochastic Processes and Long Range Dependence; Springer: New York, NY, USA, 2016. [Google Scholar]
- Feng, M.; Deng, L.J.; Chen, F.; Perc, M.; Kurths, J. The accumulative law and its probability model: An extention of the Pareto distribution and the log-normal distribution. Proc. R. Soc. A. 2020, 476, 20200019. [Google Scholar]
- Alfaer, N.M.; Gemeay, A.M.; Aljohani, H.M.; Afify, A.Z. The extended log-logistic distribution: Inference and actuarial applications. Mathematics 2021, 9, 1386. [Google Scholar]
- Mehta, N.J.; Yang, F. Portfolio optimization for extreme risks with maximum diversification: An empirical analysis. Risks 2021, 10, 101. [Google Scholar]
- Yang, Y.; Wang, X.; Zhang, Z. Finite-time ruin probability of a perturbed risk model with dependent main and delayed claims. Nonlinear Anal. Model. Control 2021, 26, 801–820. [Google Scholar]
- Bourguignon, M.; Gallardo, D.D.; Gómez, H.J. A note on Pareto-type distributions parametrized by its mean and precision parameters. Mathematics 2022, 10, 528. [Google Scholar] [CrossRef]
- Olmos, N.M.; Gómez-Déniz, E.; Venegas, O. The heavy-tailed Gleser model: Properties, estimation, and applications. Mathematics 2022, 10, 4577. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1971; Volume 2. [Google Scholar]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events for Insurance and Finance; Springer: New York, NY, USA, 1997. [Google Scholar]
- Cline, D.B.H. Intermediate regular and Π variation. Proc. London Math. Soc. 1994, 68, 594–611. [Google Scholar] [CrossRef]
- Cline, D.B.H.; Samorodnitsky, G. Subexponentiallity of the product of independent random variables. Stoch. Process. Appl. 1994, 49, 75–98. [Google Scholar]
- Cai, J.; Tang, Q. On max-type equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 2004, 41, 117–130. [Google Scholar] [CrossRef]
- Kizinevič, E.; Sprindys, J.; Šiaulys, J. Randomly stopped sums with consistently varying distributions. Mod. Stoch. Theory Appl. 2016, 3, 165–179. [Google Scholar] [CrossRef]
- Feller, W. One-sided analogues of Karamata’s regular variation. Enseign. Math. 1969, 15, 107–121. [Google Scholar]
- Tang, Q.; Yua, J. A sharp inequality for the tail probabilities of sums of i.i.d. r.v.’s with dominatedly varying tails. Sci. China Ser. A 2002, 45, 1006–1011. [Google Scholar]
- Tang, Q.; Tsitsiashvili, G. Precise estimates for the ruin probability in the finite horizon in a discrete-time risk model with heavy-tailed insurance and financial risks. Stoch. Process. Appl. 2003, 108, 299–325. [Google Scholar]
- Konstantinides, D. A class of heavy tailed distributions. J. Numer. Appl. Math. 2008, 96, 127–138. [Google Scholar]
- Watanabe, T.; Yamamuro, K. Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 2010, 15, 44–74. [Google Scholar]
- Gao, M.; Wang, K.; Chen, L. Precise large deviations for widely orthant dependent random variables with different distributions. J. Inequal. Appl. 2018, 2018, 21. [Google Scholar]
- Dirma, M.; Paukštys, S.; Šiaulys, J. Tails of the moments for sums with dominatedly varying random summands. Mathematics 2021, 9, 824. [Google Scholar]
- Zhang, A.; Liu, S.; Yang, Y. Asymptotics for ultimate ruin probability in a by-claim risk model. Nonlinear Anal. Model. Control 2021, 26, 259–270. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y. Precise large deviations for aggregate claims of a compound renewal risk model with arbitrary dependence between claim sizes and waiting times. Lith. Math. J. 2022, 62, 542–552. [Google Scholar]
- Matuszewska, W. On generalization of regularly increasing functions. Studia Math. 1964, 24, 271–279. [Google Scholar] [CrossRef]
- Cline, D.B.H.; Hsing, T. Large Deviation Probabilities for Sums and Maxima of Random Variables With Heavy or Subexponential Tails; Texas A&M University: College Station, TX, USA, 1991. [Google Scholar]
- Chistyakov, V.P. A theorem on sums of independent, positive random variables and its applications to branching processes. Theory Probab. Appl. 1964, 9, 640–648. [Google Scholar] [CrossRef]
- Embrechts, P.; Goldie, C.M. On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. Ser. A 1980, 29, 243–256. [Google Scholar] [CrossRef]
- Klüpelberg, C. Subexponential distributions and integrated tails. J. Appl. Probab. 1988, 25, 132–141. [Google Scholar] [CrossRef]
- Pakes, A.G. Convolution equivalence and infinite divisibility. J. Appl. Probab. 2004, 41, 407–424. [Google Scholar] [CrossRef]
- Shimura, T.; Watanabe, T. Infinite divisibility and generalized subexponentiality. Bernoulli 2005, 11, 445–469. [Google Scholar] [CrossRef]
- Foss, S.; Korshunov, D.; Zachary, S. Convolution of long-tailed and subexponential distributions. J. Appl. Probab. 2009, 46, 756–767. [Google Scholar] [CrossRef]
- Qian, H.; Geng, B.; Wang, S. Tail asymptotics of randomly weighted sums of dependent strong subexponential random variables. Lith. Math. J. 2022, 62, 113–122. [Google Scholar] [CrossRef]
- Chover, J.; Ney, P.; Waigner, S. Degeneracy properties of subcritical branching processes. Ann. Probab. 1973, 1, 663–673. [Google Scholar] [CrossRef]
- Chover, J.; Ney, P.; Waigner, S. Functions of probability measures. J. d’Analyse Math. 1973, 26, 255–302. [Google Scholar] [CrossRef]
- Cline, D.B.H. Convolution tails, product tails and domains of attraction. Probab. Theory Relat. Fields 1986, 72, 529–557. [Google Scholar] [CrossRef]
- Bertoin, J.; Doney, R.A. Some asymptotic results for transients random walks. Adv. Appl. Probab. 1996, 28, 207–226. [Google Scholar] [CrossRef]
- Su, C.; Chen, J.; Hu, Z. Some discussions on the class L(γ). J. Math. Sci. 2004, 122, 3416–3425. [Google Scholar] [CrossRef]
- Tang, Q. The overshoot of a random walk with negative drift. Stat. Probab. Lett. 2007, 77, 158–165. [Google Scholar] [CrossRef]
- Watanabe, T. Convolution equivalence and distribution of random sums. Probab. Theory Relat. Fields 2008, 142, 367–397. [Google Scholar] [CrossRef]
- Cheng, D.; Ni, S.; Pakes, A.G.; Wang, Y. Some properties of the exponential distribution class with applications to risk theory. J. Korean Stat. Soc. 2012, 41, 515–527. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Cheng, D.; Yu, C. On the closure under infinitely divisible distribution roots. Lith. Math. J. 2022, 62, 259–287. [Google Scholar] [CrossRef]
- Albin, J.M.P.; Sunden, M. On the asymptotic behaviour of Lévy processes, part I: Subexponential and exponential processes. Stoch. Process. Appl. 2009, 119, 281–304. [Google Scholar] [CrossRef]
- Su, C.; Chen, Y. Behaviors of the product of independent random variables. Int. J. Math. Anal. 2007, 1, 21–35. [Google Scholar] [CrossRef]
- Xu, H.; Scheutzow, M.; Wang, Y. On a transformation between distributions obeing the principle of a single big jump. J. Math. Anal. Appl. 2015, 430, 672–684. [Google Scholar] [CrossRef]
- Danilenko, S.; Šiaulys, J.; Stepanauskas, G. Closure properties of O-exponential distributions. Stat. Probab. Lett. 2018, 140, 63–70. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y. On the long tail property of product convolution. Lith. Math. J. 2020, 60, 315–329. [Google Scholar] [CrossRef]
- Shiryaev, A.N. Probability; Springer: New York, NY, USA, 1995. [Google Scholar]
- Sprindys, J.; Šiaulys, J. Asymptotic formulas for the left truncated moments of sums with consistently varying distributed increments. Nonlinear Anal. Model. Control 2021, 26, 1200–1212. [Google Scholar] [CrossRef]
- Liu, Y. A general treatment of alternative expectation formulae. Stat. Probab. Lett. 2020, 166, 108863. [Google Scholar] [CrossRef]
- Ogasawara, H. Alternative expectation formulas for real-valued random vectors. Commun. Stat. Theory Methods 2020, 49, 454–470. [Google Scholar] [CrossRef]
- Song, P.; Wang, S. A further remark on the alternative expectation formula. Commun. Stat. Theory Methods 2021, 50, 2586–2591. [Google Scholar] [CrossRef]
- Karamata, J. Sur un mode de croissance régulière des functions. Mathematica 1930, 4, 38–53. [Google Scholar]
- De Haan, L. Equivalence classes of regularly varying functions. Stoch. Process. Appl. 1974, 2, 243–259. [Google Scholar] [CrossRef]
- Buldygin, V.V.; Pavlenkov, V.V. A generalisation of Karamata’s theorem on the asymptotiic behavior of integrals. Theory Probab. Math. Stat. 2010, 81, 15–26. [Google Scholar] [CrossRef]
- Buldygin, V.V.; Pavlenkov, V.V. Karamata theorem for regulary log-periodic functions. Ukr. Math. J. 2013, 64, 1635–1657. [Google Scholar] [CrossRef]
- Omey, E.; Cadena, M. New results on slowly varying functions in the Zygmund sense. Proc. Jpn. Acad. A Math. Sci. 2020, 96, 45–49. [Google Scholar] [CrossRef]
- Tang, Q.; Su, C. Ruin probabilities for large claims in delayed renewal risk model. Southeast Asian Bull. Math. 2002, 25, 735–743. [Google Scholar] [CrossRef]
- Su, C.; Tang, Q. Characterizations on heavy-tailed distributions by means of hazard rate. Acta Math. Appl. Sin. 2003, 19, 135–142. [Google Scholar] [CrossRef]
- Su, C.; Hu, Z. On two broad classes of heavy-tailed distributions. Far East J. Math. 2004, 5, 195–204. [Google Scholar]
- Su, C.; Hu, Z.; Chen, Y.; Liang, H. A wide class of heavy-tailed distributions and its applications. Front. Math. China 2007, 2, 257–286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paukštys, S.; Šiaulys, J.; Leipus, R. Truncated Moments for Heavy-Tailed and Related Distribution Classes. Mathematics 2023, 11, 2172. https://doi.org/10.3390/math11092172
Paukštys S, Šiaulys J, Leipus R. Truncated Moments for Heavy-Tailed and Related Distribution Classes. Mathematics. 2023; 11(9):2172. https://doi.org/10.3390/math11092172
Chicago/Turabian StylePaukštys, Saulius, Jonas Šiaulys, and Remigijus Leipus. 2023. "Truncated Moments for Heavy-Tailed and Related Distribution Classes" Mathematics 11, no. 9: 2172. https://doi.org/10.3390/math11092172
APA StylePaukštys, S., Šiaulys, J., & Leipus, R. (2023). Truncated Moments for Heavy-Tailed and Related Distribution Classes. Mathematics, 11(9), 2172. https://doi.org/10.3390/math11092172