1. Introduction
The volatility of the financial market is an important indicator for measuring the degree of price fluctuations of financial assets, which plays a very important role in practical applications such as investment decision making [
1], asset pricing [
2], and risk management [
3]. Therefore, the construction of a more accurate volatility estimation and forecasting model has very important theoretical value and application significance.
The research on volatility estimation and prediction has gone through the process from using low-frequency data to using high-frequency data for prediction. In the context of low-frequency data, Engle [
4] proposed an autoregressive conditional heteroskedasticity (ARCH) model that considers changes in volatility. On this basis, Bollerslev [
5] proposed a generalized autoregressive conditional heteroskedasticity (GARCH) model in order to better characterize the heteroskedasticity of the residuals of financial asset return series. Based on the assumption that conditional variance obeys an unobservable stochastic process, Taylor [
6] proposed the stochastic volatility (SV) model. However, the drawback of the above models is that a large amount of intraday price information is lost when estimating stock volatility, and high-frequency data can provide more fine-grained price fluctuation information, which can help improve the accuracy of volatility estimation. With the ease and decreasing cost of access to high-frequency data, high-frequency data have become more common in the study of financial asset return volatility, which provides a new entry point for financial volatility forecasting. In the context of high-frequency data, Andersen et al. [
7] proposed an estimator of realized volatility based on the sum of squares of intraday high-frequency returns as a new way to measure daily volatility. Corsi [
8] proposed the heterogeneous autoregression (HAR) model for financial volatility forecasting, which introduces information about historical volatility over different time scales to more sensitively capture volatility’s short-term and long-term changes. However, the complexity and variability of the financial market itself means that more factors need to be considered when building forecasting models, like macro-factors, sentiment factors [
9], and investor attention factor [
10], etc. Furthermore, the relationship between these variables is often nonlinear and dynamically changing, which makes it difficult for traditional time-series models to adapt to changes in the market, and the forecasting accuracy is limited. In addition, traditional econometric models can only be applied to the modeling of smooth series, but the price series in financial markets are often trending and seasonal, which makes it difficult for them to meet the requirement of smoothness.
In recent years, nonlinear machine-learning models have been gradually adopted in financial time-series forecasting and can fully exploit the nonlinear relationship between variables and strong feature-learning ability, which improves the forecasting performance of the models to some extent. Currently, nonlinear machine prediction models include support vector machines and random forests, etc. For example, Liu et al. [
11] predicted the volatility of the shipping market index using the AR-SVR-GARCH model, Li and Qiao [
12] predicted the realized the volatility of the CSI 300 index using the SW-SVR model. To predict the share price movement of a clean energy exchange-traded fund, Sadorsky [
13] predicted the volatility of the Clean Energy Exchange Traded Fund (CETF) using random forests, and Zhuo and Morimoto [
14] used a hybrid HAR model and SVR model to forecast realized volatility. However, the ability of machine learning to portray the correlation of data before and after a financial time series is poor, and deep-learning models have been gradually developed to further improve the prediction accuracy and better express the correlation of data before and after a time series. Long-short-term memory (LSTM) networks, as an improved model of recurrent neural network (RNN), focus on coping with long-term dependence and do not require complex hyper-parameter tuning, and they are able to automatically memorize the historical information of a longer period of time, but the LSTM itself has a relatively complex model structure and is computationally intensive when the time span of the data is large. Convolutional neural networks (CNN) are able to learn the temporal and spatial features of time series without complex information processing by using convolutional and pooling layers as feature extractors [
15]. However, CNN is deficient in capturing the long-term serial features of financial time series. Zhou [
16] found that the deep-learning model CNN-LSTM has a strong learning ability and overfitting resistance to nonlinear relationships. Lu et al. [
17] and Chen [
18] utilized the CNN-LSTM model for stock price prediction and found that the model prediction accuracy was higher. However, CNN-LSTM models in the existing literature mainly focus on stock price trend prediction and less on the prediction of stock price volatility.
In addition, most of the above models consider using the same frequency of market indicators or technical indicators to predict the time series. More existing studies show that macro-variables play an important role in predicting stock market volatility; for example, Amendola et al. [
19] use the GARCH-MIDAS model to study the asymmetric effect of macro-variables on stock volatility, Shang and Zheng [
20] introduce an SV-MIDAS model with input macro-variables to predict the stock price volatility, and Li et al. [
21] use a GARCH-MIDAS model to introduce macro-variables to predict stock volatility under economic policy uncertainty. Compared with stock market data and technical indicators, macro-variables are usually low-frequency variables. Currently, when dealing with mixed-frequency data, some scholars use linear interpolation to deal with the mismatch between high-frequency and low-frequency information, but when dealing with financial time-series data, linear interpolation may lead to distortion of the trend, resulting in the loss of information. Ghysels et al. [
22] proposed that the MIDAS model can frequency-align high-frequency variables into low-frequency variables, combining data from different frequencies to predict volatility. However, MIDAS has high computational complexity and performs poorly when dealing with nonlinear relationships, and more flexible methods need to be considered to deal with datasets with complex nonlinear relationships. RU-MIDAS, proposed by Foroni et al. [
23], enables the prediction of the trend of a low-frequency variable to a high-frequency variable, but it can achieve good empirical results only when the frequency multiplicity difference is small. The RR-MIDAS model proposed by Xu et al. [
24] simplifies the calculation process and still shows good prediction accuracy when the frequency multiplicity difference is 22. Wu et al. [
25] used the GARCH-MIDAS model to process the mixed-frequency data and predict volatility and found that the model was more accurate and robust. In summary, when using mixed-frequency data to predict volatility, more scholars have noticed the advantages of the MIDAS model in mixed-frequency data processing, and more scholars only use the MIDAS econometric model to homogenise and predict mixed-frequency data without considering the advantages of the deep-learning model in multivariate time-series data feature learning and data prediction.
The introduction of macro-factors in forecasting stock price volatility is necessary to fill the gaps in existing research, taking into account the dual impact of macro-factors on business operations and discount rates. Aiming at the differences in data frequency between markets, fundamental and macro-factors and realized volatility, as well as the problem of information loss that may be caused by traditional homogenization processing, this paper proposes the RR-MIDAS-CNN-LSTM-PARALLEL (RM-CNN-LSTM-P) model. First, the data with different frequencies are reverse-mixed using the RR-MIDAS model. Then, the spatial and temporal features of the time series are extracted from market indicators, fundamental indicators, and macro-variables by CNN-LSTM, respectively. Meanwhile, the temporal features of realized volatility are processed using a parallel LSTM network to capture its dynamic changes. To further enhance the model performance, the Optuna framework is employed to tune the model hyperparameters. Finally, the extracted temporal and spatial features are fed into the fully connected layer to predict the realized volatility at the next moment.
This paper makes four contributions in stock price volatility forecasting. First, this study recognizes the impact of macro-factors on firms’ operations and cash flow discount rates, and therefore introduces macro-indicators in addition to traditional market and fundamental indicators to enhance the forecasting accuracy of realized stock price volatility. Second, for the frequency difference between macroeconomic data and stock market data, this study adopts the RR-MIDAS model to deal with the problem of mixed-frequency data, which effectively avoids the information distortion and estimation bias that may be caused by the traditional interpolation method, and significantly improves the volatility prediction performance. Then, in terms of model construction, this paper introduces an LSTM network in parallel on the basis of CNN-LSTM architecture, which is specifically used to extract the temporal features of realized volatility, and this improvement significantly improves the prediction accuracy of the model. In addition, considering the high number of hyperparameters of deep-learning models, this study utilizes the Optuna framework to tune the model hyperparameters and verifies the superiority of the proposed model by comparing it with other commonly used models. Finally, to test the robustness of the model, this paper compares the prediction results of the RM-CNN-LSTM-P model after 500 experiments with 17 other models and performs the DM test, which shows that the model not only predicts accurately, but also has high robustness.
The structure of this paper is as follows:
Section 2 introduces the principles of the econometric model RR-MIDAS and the deep-learning model CNN-LSTM-P, comprehensively summarizes the evaluation criteria and the principles of the DM test, and then details the research process.
Section 3 introduces the data sources, basic data characteristics and Optuna tuning framework, argues the correlation between explanatory variables and volatility, and demonstrates the optimal hyperparameters of the RM-CNN-LSTM-P model under the Optuna tuning framework. The test set volatility prediction accuracies and rankings of 18 volatility prediction models under six loss functions are further compared, and finally, influence experiments and DM tests are conducted to argue the importance of the three macro-variables in improving the prediction accuracy of the models, and to verify that the RM-CNN-LSTM-P model is significantly better than the other models.
Section 4 discusses the difference in prediction performance between this paper and the linear interpolation model, and the parallel LSTM model with CNN removed, and
Section 5 provides conclusions and extensions.
3. Empirical Research
In order to improve the prediction accuracy of volatility, this paper combines the realized volatility calculated based on 5-min high-frequency financial data and its influencing factors to construct a new volatility prediction index system. In addition, the prediction accuracy of the RM-CNN-LSTM-P model is compared with that of the traditional econometric model, the machine-learning model, and the deep-learning model with and without the introduction of macro-variables, respectively.
3.1. Data Sources and Description
Building on the work of Lei et al. [
10] and Song et al. [
31], this study selects the following variables as influential factors for volatility prediction. Gross domestic product (GDP), consumer price index (CPI), and purchasing manager’s index (PMI) are selected to construct the macro-factor dataset, and the frequencies and interpretations of the target variables and each explanatory variable are shown in
Table 1.
CPI, GDP, and PMI data were obtained from Sina Finance (
https://finance.sina.com.cn/, accessed on 13 May 2024). RV, BIAS, DMA, CDP, AR, BR, RV_V, and CR were calculated from the trading volume, overnight spreads, turnover rate, and other data related to the SSE index, and the basic data related to the calculations were obtained from the Wind database. SSE BOLL, MACD, VMACD, MA, RSI, KDJ, GL, VL, and OI were obtained from the Wind database.
The datasets of the above macro-factors are low-frequency variables, in which GDP is season data and the remaining two macro-indicators are monthly data, and this paper uses linear interpolation to interpolate the quarterly data to obtain monthly GDP data. All data were taken from 1 March 2011 to 31 October 2022, a total of 2832 trading days. In order to maintain the consistency of the frequency multiplicity difference between low-frequency data and high-frequency data, this paper treats the monthly trading days of the high-frequency data as 20 days and randomly removes the excess trading day data in the months that are more than 20 days; the trading days that are less than 20 days are supplemented by the linear interpolation to 20 days, and the final trading days are 2800 days.
To perform linear interpolation, consider two known points,
and
, where
, and we want to find the value of function
at a point
x that lies between
and
. The linear interpolation formula is given by:
In this paper, we calculate the daily realized volatility based on the methodology in Andersen et al. [
7], which is the logarithm of the daily adjacent 5-min closing price
to compute the sum of the returns
squared, which is defined as follows:
where
t represents the trading day and
is the closing price for every five minutes of trading day
t,
.
Figure 4 illustrates the Spearman correlation coefficients between the indicators of forecasting and between the variables with realized volatility.
As can be seen in
Figure 4, the correlation between RV and BIAS, DMA, VL, and OI is high, and there is also some correlation with CPI, GDP, and PMI. The covariance test between the indicators shows low correlation, which indicates that introducing these variables simultaneously into the model does not lead to serious multicollinearity problems, especially with the macro-variables, and the correlation is low (the absolute value of which is between 0 and 0.2); there is a certain degree of correlation between the indicators and realized volatility, and some of the indicators have a correlation of more than 0.3 (e.g., OI, BIAS); in particular, the correlation between the macroeconomic variables and the realized volatility is more prominent. Therefore, when constructing the forecasting model the introduction of these variables may improve the forecasting accuracy of the model.
In this paper, the target variable is realized volatility (RV), and the explanatory variables include micro variables (basic quotes, technical indicators) and macro-variables. When training the model, this paper splits the dataset into a training set (from 1 March 2011 to 31 December 2020) and a test set (from 1 January 2021 to 31 October 2022). In addition, in order to avoid model training overfitting, the latter 20% of the training set is selected as the validation set in this paper. In addition, in order to eliminate the interference of the quantiles on model training, this paper standardizes all variables and back-standardizes the predicted values of the model. The standardization calculation formula is as follows:
In the above equation,
x and
y are eigenvectors, and
and
represent the mean and standard deviation of the corresponding variables, respectively. This paper scrolls through the past 20 days of historical data to predict the next day’s realized volatility, as shown in
Figure 5.
3.2. Optuna Framework
The RM-CNN-LSTM-P model for predicting the realized volatility of stock prices proposed in this paper contains multiple nonlinear hyperparameters, and the tuning of these nonlinear parameters is difficult; the grid search method and stochastic search are a way to find better hyperparameters, but they have the disadvantages of being more time-consuming and consuming more resources.
To tune the nonlinear hyperparameters in the model, this paper introduces the widely used Optuna tuning framework, which improves the predictive ability of the model by automatically tuning the appropriate hyperparameters. The framework, developed by Akiba et al. [
32], has two basic concepts: study, an optimization process based on an objective function; and trial, a single execution process of the objective function. The tuning framework performs pruning operations on poorly performing trials to improve efficiency while selecting the best hyperparameters for the model to achieve optimal results. In the tuning process of the Optuna framework, this paper chooses the tree-structured Parzen estimator [
33] algorithm as a sampler to find the optimal hyperparameter search space.
There are 67 hyperparameters in the model of this paper: first, the hyperparameters in RR-MIDAS include the maximum lag orders , , of the three low-frequency variables CPI, GDP, and PMI, and their corresponding Almon coefficients , , , where (frequency multiplicity in this paper). Thus there are 63 hyperparameters in total. Secondly, there are two hyperparameters in the neural network part of CNN and LSTM, including the number of units in the serial LSTM module with CNN and the number of units in the parallel LSTM module with CNN . Finally, the model training part consists of two hyperparameters: the batch size, , and the learning rate of Adam’s optimizer, .
In the Optuna tuning process, each trial tries to minimize the loss metric and calculate various error metric values. In this paper, we set the number of experiments,
, and the return value is the loss MAE value of the model on the validation set. The hyperparameter optimization process of the RM-CNN-LSTM-P model is shown in
Figure 6, where the horizontal coordinate represents the number of experiments, the vertical coordinate represents the MAE value, the blue dots represent the MAE at the end of one experiment, and the red line represents the minimum loss value up to each experiment before the experiment is carried out up to 500 times.
Table 2 demonstrates the hyperparameters of the RM-CNN-LSTM-P model after Optuna framework tuning.
3.3. Prediction Results
In order to examine the prediction performance of the proposed models in this paper, in this section the RM-CNN-LSTM-P model is compared with the deep-learning models RM-CNN, RM-LSTM, RM-CNN-GRU, and RM-CNN-LSTM with the introduction of macroscopic data, also with the CNN, LSTM, CNN-GRU, and CNN-LSTM model without the introduction of macroscopic data. The machine-learning models RM-SVR and RM-RF with the introduction of macro-data, the deep-learning models SVR and RF without the introduction of macro-data, as well as the classical econometric models HAR, RM-RIDGE, RM-LINEAR, RIDGE, and LINEAR are also compared. The results are shown in
Table 3.
For all models, the prediction performance of the models improves after adding macroeconomic variables to the explanatory variables, which initially shows the importance of macro-variables for prediction; the prediction performance of the deep-learning model is better than that of the machine-learning model, and the prediction performance of the machine-learning model is better than that of the ridge model and the linear model; among them, the RM-CNN-LSTM-P model proposed in this paper has the best prediction performance among all the models.
First, the RM-CNN-LSTM-P model reduces RMSE, MAE, MSLE, SMAPE, and QLIKE by 18.01%, 12.40%, 28.91%, 9.25%, and 29.74%, respectively, compared with the RM-CNN-LSTM model, which indicates that the parallel LSTM approach proposed in this paper has a better prediction performance than the one that directly inputs the RV together with other explanatory variables into the model. The parallel LSTM can effectively extract temporal features, which in turn improves the prediction performance of the model.
Secondly, the optimal RM-CNN-LSTM-P among deep-learning models reduces RMSE, MAE, MSLE, MAPE, and SMAPE by 26.67%, 45.86%, 56.87%, 69.09%, and 35.66%, respectively, compared with the optimal RM-SVR among machine-learning models, and comparing the best predictive performance of RM-SVR among machine-learning models RMSE by 50.91%, QLIKE by 76.87%, and RM-SVR model by higher ranking compared to the HAR model, which has the best predictive performance among traditional metrics models. SVR fits the data by finding the optimal hyperplane, and it may not perform well for datasets with more features or higher complexity. In contrast, deep-learning models can better handle complex data structures and features, and therefore perform better in this comparison. Additionally, traditional statistical models are usually based on a number of assumptions and simplifications and may not adapt well to complex data structures.
In addition, the QLIKE error is particularly sensitive to the deviations of individual forecasts. Unlike other error metrics that are based on linear responses to deviations between predicted and actual realized volatility values, , QLIKE incorporates a logarithmic transformation that can amplify the impact of large errors, especially underestimations.
The term penalizes underestimates more than overestimates, as the logarithm of a small number becomes increasingly negative. Also, the term can become very large if is significantly underpredicted, leading to a significant increase in the QLIKE value. This asymmetric treatment of errors means that the QLIKE metric places a higher cost on underprediction.
3.4. Result Explanations
Using RM-LINEAR as the benchmark model, the percentage change of other model metrics is shown in
Table 4.
Except for individual values, the RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE metrics of the predicted values of each model decreased, and the model prediction accuracies were improved to different degrees, among which RM-CNN-LSTM-P is the optimal deep-learning model, the deep-learning model is better than the machine-learning model, and the econometric model is the worst.
Taking RM-CNN-LSTM-P as an example, all of its indexes have a significant decrease compared with the benchmark model, especially on MAPE, which reaches 85.53%, which means that the model has a great improvement in prediction accuracy compared with the base model. This indicates that LSTM is particularly suitable for processing and predicting long-term dependency problems in time-series data.
CNN-GRU combines the use of convolutional neural networks and GRU. CNN is good at extracting spatial features in time-series data, while GRU is a simplified version of LSTM with fewer parameters and lower computational complexity, but its performance is slightly weaker than that of LSTM in the complex scenarios in this paper.
CNN is a deep-learning model commonly used to process data with an obvious spatial structure, which uses convolutional layers to automatically and efficiently capture spatial hierarchical features of the data, but it is not able to capture temporal features better, so its prediction performance is not good when used independently.
Among the machine-learning models, for RM-SVR and RM-RF, while also showing improvements over the benchmark models, the improvements are much smaller compared to the deep-learning models. Compared to SVR, CNNs typically have better performance when dealing with large datasets because they can capture deeper features, which is difficult to do with traditional machine-learning methods. For example, RM-SVR shows an improvement of 53.20% on MAPE, while the deep-learning model shows at least 75.57% improvement, which shows the advantage of deep learning in dealing with complex nonlinear problems.
The econometric model RM-RIDGE shows the smallest improvement, with only a small decrease in all metrics, which may be due to the fact that econometric models are inherently linear and have a limited ability to deal with nonlinear and complex data structures, and therefore have the worst performance in comparison with the other models.
The main reason why the deep-learning model outperforms the machine-learning model and the econometric model is because of its stronger pattern recognition and feature extraction capabilities when dealing with nonlinear, complex, and high-dimensional data structures, which enables the deep-learning model to show more accurate predictions across a wide range of predictive metrics.
Finally,
Table 5 compares the effect of whether or not macro-variables are input on the prediction accuracy of the model. Most of the data in the table are negative, which indicates that the model with macro-features has better prediction performance. RM-CNN-LSTM-P reduces the RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE by 18.25%, 14.91%, 30.00%, 12.85%, 13.74%, and 23.42%, respectively, when compared to the model without inputting macro-variables, confirming the importance of macro-features in improving model performance. Macro features provide more comprehensive information about the external environment, and these macroeconomic indicators can reflect the overall market trend and potential economic cycle changes, which allows the model to take into account more factors that may affect the prediction, thus improving the prediction accuracy and robustness of the model.
Combining the advantages of CNN and LSTM for processing sequence data and parallel LSTM for capturing temporal characteristics, together with the introduction of macro-features, the structural design of RM-CNN-LSTM-P as well as the integration of macro-features enable the model to more accurately capture the key information driving the prediction when dealing with complex data, and thus its prediction performance is significantly better than that of the other models in many performance indicators.
3.5. The Degree of Influence of the Three Macro-Variables on the Predictive Performance of the Model
The purpose of this experiment is to remove any one of the three macro-variables in order to study the effect of a macro-variable on the model as a whole; if the predictive performance of the model does not decrease significantly after the removal of a macro-variable, it means that this part of the model has a small effect on the performance of the model, and if the predictive performance of the model decreases significantly after the removal of a macro-variable, it means that this macro-variable has an important predictive value.
In order to explore the degree of influence of the three macro-variables CPI, GDP, and PMI on the model prediction performance, this paper, based on the tuning results, fixes the optimal hyperparameters (as
Table 2) to conduct the experiments; removes CPI, GDP, and PMI successively in order to test the degree of importance of the variables in the model prediction; calculates the prediction value; and calculates the six evaluation indexes proposed in
Section 2.4.1. In this paper, the following formula is used to assess the importance of variables:
where
denotes the loss value with the removal of macro-variable
i and
denotes the loss value when no macro-variable is removed.
Table 6 demonstrates the percentage change in the loss values of the corresponding error indicators after removing each macro variable.
A larger percentage change in the loss values implies that the corresponding macro-variables have a more significant effect on the improvement of the model’s forecasting accuracy. It is not difficult to see that the changes in the loss indicators after removing the GDP variable are generally higher than the other macro-variables, especially in RMSE and MSLE. This indicates that GDP is one of the most important factors influencing the model forecasts.
For the different loss indicators, the magnitude of change in QLIKE is particularly significant. the percentage change in QLIKE for CPI is as high as 187.39%, which is much higher than the range of change in GDP and PMI. This indicates that QLIKE is very sensitive to changes in CPI.
It can be seen that for the RM-CNN-LSTM-P model that the effects of the three macro-variables are positive for RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE. The changes in these quantitative indicators not only allow us to assess the importance of macro-variables, but also to find out the degree of fluctuation in the performance of the predictive model when different macro-variables are missing.
3.6. DM Test
In order to verify whether the RM-CNN-LSTM-P model is significantly better than the other models, this paper adopts the DM test, which is used to compare whether there is a significant difference in the prediction performance of the two prediction models.The results of the DM test are shown in
Table 7.
The null hypothesis of the DM test is that the two models have the same prediction performance, and if the value of the DM test statistic is negative it indicates that there is a significant difference between the prediction performance of the model and the prediction performance of a certain column model, and the larger the absolute value of the DM statistic, the larger the difference in the prediction performance of the model.
First of all, the DM statistics of the prediction results of the RM-CNN-LSTM-P model and other models are all significant at the 1% or 5% level, and the DM statistics are all negative, which indicates that the prediction results of the RM-CNN-LSTM-P model are more accurate and robust. Among them, the absolute values of the DM statistics of the RM-CNN-LSTM-P and RM-LINEAR, RM-RIDGE, RM-RF, and RM-SVR models are all larger, which indicates that the predictive ability of the RM-CNN-LSTM-P model is significantly better than the RM-LINEAR, RM-RIDGE, RM-RF, and RM-SVR models. Secondly, the DM test results show that the deep-learning model is better than the machine-learning model, and the traditional econometric model has the worst prediction accuracy, and this conclusion is robust. The results of the DM test again prove the conclusions in
Table 3.
5. Conclusions and Extension
In order to accurately predict the realized volatility of stocks, this paper introduces macro-indicators on the basis of market indicators and fundamental indicators of stocks. When dealing with mixed-frequency data, this paper integrates the RR-MIDAS model into the CNN-LSTM architecture, which effectively solves the problem of low-frequency macroeconomic data processing and significantly advances the volatility prediction technique. In addition, in terms of forecasting model, this paper extracts the temporal information of realized volatility by parallelizing an LSTM, which improves the forecasting accuracy of the model. Finally, the hyperparameters of the prediction model are automatically optimized through the Optuna tuning framework, which provides a new model framework for volatility prediction.
Based on the above study, this paper proposes five conclusions: first, from the perspective of introduced variables, among all models, those with macro-features have better forecasting performance. Second, in terms of prediction models, the RM-CNN-LSTM-P model proposed in this paper has the best prediction performance, and the deep-learning model has better prediction performance than the machine-learning model and the traditional econometric model. Third, from the point of view of whether parallel LSTM, the prediction performance of RM-CNN-LSTM model and RM-LSTM after parallel LSTM is improved, and LSTM can effectively extract the temporal features of the realized volatility, which improves the prediction performance of the model. Fourth, in terms of the mixing data processing method, the RR-MIDAS-based prediction model has better prediction results compared with the interpolation method. Fifth, in terms of the robustness of the results, the RM-CNN-LSTM-P model proposed in this paper has a robust performance. The results of impact experiments show that all three macro-variables, CPI, GDP, and PMI, have significant positive effects on improving the prediction accuracy of the model. The DM test results show that the prediction performance of the RM-CNN-LSTM-P model proposed in this paper is significantly better than that of other machine-learning or econometrics models.
The research in this paper has certain practical value. Firstly, for regulators, they can adjust regulatory policies and measures according to the predicted volatility situation, intervene in the market in time, and prevent the occurrence of financial risks. Secondly, for financial institutions, according to the predicted volatility situation, they can adjust the weights of different assets, choose appropriate investment products, and reduce the risk exposure of their investment portfolios. Finally, for individual investors, they can choose investment products with lower volatility according to the predicted volatility situation, so as to realize sound value-added worth of their personal investment portfolios.
The research in this paper provides innovative ideas and empirical support for further development in the field of volatility forecasting. In future volatility prediction research, on the one hand, we can further enrich the index system of volatility prediction by introducing multifactors such as market sentiment indicators to further prove the accuracy of the model; on the other hand, we can consider further improving the CNN-LSTM framework and introducing the attention mechanism to continuously improve the learning ability and prediction performance of the model.