Dynamic Failure Characteristics of Sandstone Containing Different Angles of Pre-Existing Crack Defects
Abstract
:1. Introduction
2. Experimental Details
2.1. Dynamic Specimen Preparation and Loading Conditions Design
2.2. Experimental Principle and Loading System
- (1)
- The experimental principle of SHPB
- (2)
- The experimental principle of DIC
- (3)
- Loading system
3. Dynamic Damage Characteristic of Fractured Sandstone
3.1. Mechanical Properties
3.2. Analysis of Energy Consumption Pattern
3.3. Dynamic Damage Process and Rupture Mode
4. Research on Dynamic Failure Characteristics of Sandstone with Crack Defects under Initial Stress
4.1. Determination of RHT Model Parameters and Validation
4.1.1. Determination of RHT Parameters for Sandstone
- (1)
- Determination of basic strength parameters
- (2)
- Determination of strength parameters of the failure surface
- (3)
- Determination of p-α equation of state parameters
- (4)
- Determination of strain rate parameters
4.1.2. Establishment and Verification of Numerical Simulation
4.2. Damage and Strength Law of Crack Sandstone under Confining Pressure Effect
4.3. Damage and Strength Law of Crack Sandstone under Axial Pressure Effect
4.4. Stress Field Pattern of Crack Sandstone under Initial Stresses
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusion
- (1)
- Fracture defects with different inclinations have significant effects on the dynamic mechanical parameters and energy of sandstone. With the increase in fracture angle, the compressive strength and deformation modulus first decrease and then increase and become a “V”-shaped distribution. Compressive strength is the highest at 0° sandstone and lowest at the 45° angle; the strain rate and energy dissipation rate are both distributed in an “N” shape, with the highest at an angle of 45°. The overall trend of transmittance is decaying, contrary to the pattern of transmittance.
- (2)
- Fracture angle significantly affects crack initiation, extension, penetration, and failure patterns. The damage process is similar for specimens at different angles, but the dominant damage type varies. Shear failure dominated the 0° specimens and tensile failure dominated the 30° specimens; the 45° and 60° specimens, on the other hand, produced initial shear cracks and secondary coplanar cracks, whereas the 90° specimens showed predominantly tensile failure, which was later converted to shear failure. The initial crack initiation location was approximately perpendicular to the pre-existing fissure direction for all specimens except the 30° specimen.
- (3)
- The RHT numerical calculation model damage and strength law is highly consistent with the indoor test results, which verifies the validity of the numerical model. With the increase in fracture angle, the peak strength under the confining pressure effect shows an overall trend of attenuation, and the peak strength under the axial pressure effect becomes a “V”-shaped distribution. The peak strength of specimens with different defect types increases with increasing perimeter pressure and decreases with increasing axial pressure; confining pressure contributes to the peak unit stress, while axial pressure contributes essentially nothing to the peak unit stress. The extent of damage was negatively correlated with confining pressure values and positively correlated with axial pressure values. The damage zones of specimens with crack defects at different inclination angles are approximately perpendicular to the direction of the crack and are distributed at both ends of the crack direction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Chen, L.; Su, R.; Zhao, X. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests. J. Rock Mech. Geotech. Eng. 2018, 10, 411–435. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, Y.; Hefny, A.; Cai, J.; Chen, S.; Li, H.; Liu, J.; Jain, M.; Foo, S.; Seah, C. Rock dynamics research related to cavern development for Ammunition storage. Tunn. Undergr. Space Technol. 1999, 14, 513–526. [Google Scholar] [CrossRef]
- Li, Y.; Lei, X.; Wang, N.; Ren, Y.; Jin, X.; Li, G.; Li, T.; Ou, X. Study on the failure characteristics of overburden and the evolution law of seepage field in deep buried thick coal seam under aquifers. Nat. Hazards 2023, 118, 1035–1064. [Google Scholar] [CrossRef]
- As’Habi, F.; Lakirouhani, A. Numerical modeling of jointed rock samples under unconfined and confined conditions to study peak strength and failure mode. Arab. J. Geosci. 2021, 14, 174. [Google Scholar] [CrossRef]
- Gao, Z.H.; Li, Q.; Huang, C.; Zhao, T.-D.; Yu, B.-B.; Liu, S.-K. Investigation on Mechanical and Failure Characteristics of Sandstone with Flaw. Geotech. Geol. Eng. 2023, 42, 2169–2183. [Google Scholar] [CrossRef]
- Zhang, Z. Principles and Applications of Rock Failure; Metallurgical Industry Press: Beijing, China, 1994. (In Chinese) [Google Scholar]
- Zhou, Z.; Sun, J.; Wang, H.; Guo, Y. Strain evolution and failure characteristics of porous granite under impact load. J. Cent. South Univ. Nat. Sci. Ed. 2021, 52, 681–692. (In Chinese) [Google Scholar]
- Chen, D.; Zeng, S.; Ren, P.; Liu, J. Dynamic characteristics of red sandstone under impact load. China Min. Mag. 2019, 28, 139–143+148. [Google Scholar]
- Wang, Q.; Wu, B.; Liu, F.; Yuan, W. Experimental study on dynamic compression failure of prefabricated fissure slabs of rock-like materials. Chin. J. Rock Mech. Eng. 2018, 37, 2489–2497. [Google Scholar]
- Wang, Q.; Xia, K.; Wu, B.; Xu, Y.; Liu, F. Experimental study on dynamic failure of prefabricated parallel double-jointed rock plates. J. Tianjin Univ. Nat. Sci. Eng. Technol. 2019, 52, 1099–1108. [Google Scholar]
- Li, D.; Han, Z.; Sun, X.; Zhou, T.; Li, X. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests. Rock Mech. Rock Eng. 2018, 52, 1623–1643. [Google Scholar] [CrossRef]
- Li, D.; Han, Z.; Sun, X.; Zhou, T.; Li, X. Experimental study on dynamic mechanical failure characteristics of marble with precast fracture. Chin. J. Rock Mech. Eng. 2017, 36, 2872–2883. [Google Scholar]
- Li, Q.; Gao, Z.H.; Xu, W.L.; Wang, K.; Liu, S.; Ran, G.-F.; Hu, Y. Experimental research on the dynamic propagation process of mode I cracks in the rock under directional fracture blasting using the strain gauge method. Eng. Fract. Mech. 2020, 235, 107113. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Z.H.; Yu, Q.; Huang, C.; Wang, K.; Xu, W.-L. Effect of Explosive Stress Waves on the Crack Propagation in the Defective Medium Using Strain Gauge Method. KSCE J. Civ. Eng. 2022, 26, 2780–2788. [Google Scholar] [CrossRef]
- Feng, P.; Xu, Y.; Dai, F. Effects of dynamic strain rate on the energy dissipation and fragment characteristics of cross-fissured rocks. Int. J. Rock Mech. Min. Sci. 2021, 138, 104600. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Xia, K.W.; Li, X.B.; Li, H.B.; Ma, G.W.; Zhao, J.; Zhou, Z.; Dai, F. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int. J. Rock Mech. Min. Sci. 2011, 49, 105–112. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.M.; Xie, H.M.; Asundi1, A. Topical review: Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 152–154. [Google Scholar] [CrossRef]
- Li, X. Fundamentals and Applications of Rock Dynamics; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Cong, Y.; Yuan, H.; Abi, E.; Han, Y.; Li, H.; Pu, Y. Deformation and acoustic emission characteristics of hard rock under different unloading rates. Alex. Eng. J. 2023, 77, 581–591. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, J.; Damascene, N.J.; Dong, C.; Wang, Z. A fractional order viscoelastic-plastic creep model for coal sample considering initial damage accumulation. Alex. Eng. J. 2021, 60, 3921–3930. [Google Scholar] [CrossRef]
- Tian, W.; Yu, C.; Wang, X.; Wu, P. Study on dynamic mechanical properties and energy dissipation of 3D printed fractured rock mass. Chin. J. Rock Mech. Eng. 2019, 41, 446–456. [Google Scholar]
- Wang, W.; Li, K.; Wang, X.; Jiang, H.; Yan, Z. Mechanical properties of rock-like samples with fractures of different inclination angles under SHPB loading. Sci. Technol. Rev. 2016, 34, 246–250. [Google Scholar]
- Zhang, Z.; Sun, J.; Jia, Y.; Yao, Y.; Jiang, N. Blasting effects of the borehole considering decoupled eccentric charge. Alex. Eng. J. 2024, 88, 116–125. [Google Scholar] [CrossRef]
- Yang, P.; Pang, D.; Liu, J.; Huang, Z.; Xu, W.; Dou, Z. Experiment on deformation and failure characteristics of sandstone at different unloading rates. Alex. Eng. J. 2023, 75, 209–219. [Google Scholar]
- Ma, S.; Liu, K.; Yang, J. Investigation of blast-induced rock fragmentation and fracture characteristics with different decoupled charge structures. Int. J. Impact Eng. 2024, 185, 104855. [Google Scholar] [CrossRef]
- Yin, Q.; Zhu, Q.; Deng, T.; Yu, L.; Li, M.; Liu, H.; Jing, H. Assessment on dynamic mechanical responses and failure behaviors of horizontal/vertical bedded sandstone. Environ. Earth Sci. 2023, 82, 27. [Google Scholar] [CrossRef]
- Riedel, W.; Thoma, K.; Hiermaier, S.; Schmolinske, E. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hydracodes. In Proceedings of the 9th International Symposium, Interaction of the Effects of Munitions with Structures, I13 MAC. Berlin-Strausherg, Germany, 3 May 1999; Volume 315, p. 322. [Google Scholar]
- Wang, Z.; Wang, H.; Wang, J.; Tian, N. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks. Comput. Geotech. 2021, 135, 104172. [Google Scholar] [CrossRef]
- Xie, L.X.; Lu, W.B.; Zhang, Q.B.; Jiang, Q.H.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Pan, C.; Xie, L.-X.; Li, X.; Liu, K.; Gao, P.-F.; Tian, L.-G. Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage. J. Cent. South Univ. 2022, 29, 663–679. [Google Scholar] [CrossRef]
- Li, S.; Ling, T.; Liu, D.; Liang, S.; Zhang, R.; Huang, B.; Liu, K. Determination of Rock Mass Parameters for the RHT Model Based on the Hoek–Brown Criterion. Rock Mech. Rock Eng. 2023, 56, 2861–2877. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Liu, D.; Huang, H.; Zhao, L. Sensitivity of main parameters and determination methods of rock RHT model. J. Beijing Inst. Technol. 2018, 38, 779–785. [Google Scholar]
- Tu, Z.G.; Lu, Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete. Int. J. Impact Eng. 2010, 37, 1072–1082. [Google Scholar] [CrossRef]
- Herrmann, W. Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials. J. Appl. Phys. 1969, 40, 2490–2499. [Google Scholar] [CrossRef]
- André, M.M. Dynamic Behavior of Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Holmquist, T.J.; Johnson, G.R. A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures. J. Appl. Mech. 2011, 78, 051003. [Google Scholar] [CrossRef]
Specimen Type | Specimen Size /mm | Crack Angle | Number | Loading Mode | Loading Range |
---|---|---|---|---|---|
Square | Specimen:60 × 20 × 100 wide × thick × high Pre-existing crack: 8 × 1 (length×width) | 0° | 4 | Dynamic impact | 0.18 MPa |
30° | 4 | ||||
45° | 4 | ||||
60° | 4 | ||||
90° | 4 | ||||
Standard | Ф 50*100 | —— | 4 | Uniaxial compression | 0.1 mm/min |
—— | 5 | Triaxial compression | 2.5, 5.0, 7.5, 10, 12.5 MPa | ||
Ф 50*25 | —— | 3 | Static splitting | 0.1 mm/min | |
—— | 4 | Dynamic compression | 0.18, 0.24, 0.30, 0.40 MPa | ||
—— | 4 | Dynamic splitting | 0.14, 0.16, 0.18, 0.20 MPa | ||
Specimen amounts | —— | 40 | —— | —— |
Crack Angle | Specimen Number | Dynamic Compressive Strength/MPa | Strain Rate/s−1 | Deformation Modulus/GPa | |||
---|---|---|---|---|---|---|---|
Test | Average | Test | Average | Test | Average | ||
0 | 0-2 | 205.66 | 212.14 | 68.62 | 78.10 | 125.74 | 119.68 |
0-3 | 208.40 | 73.31 | 140.67 | ||||
0-4 | 222.35 | 92.38 | 92.63 | ||||
30 | 30-1 | 212.79 | 203.31 | 85.99 | 85.68 | 147.71 | 109.45 |
30-2 | 194.61 | 81.11 | 87.47 | ||||
30-3 | 201.29 | 86.28 | 80.02 | ||||
30-4 | 204.57 | 89.34 | 122.58 | ||||
45 | 45-2 | 187.51 | 190.32 | 98.09 | 118.86 | 46.87 | 52.60 |
45-4 | 193.14 | 139.64 | 58.27 | ||||
60 | 60-1 | 201.75 | 195.71 | 62.56 | 83.62 | 73.59 | 88.93 |
60-2 | 189.90 | 66.21 | 59.32 | ||||
60-3 | 197.80 | 100.03 | 105.26 | ||||
60-4 | 193.39 | 105.69 | 117.54 | ||||
90 | 90-1 | 199.49 | 199.82 | 138.35 | 111.74 | 61.91 | 91.47 |
90-2 | 197.68 | 98.93 | 145.11 | ||||
90-3 | 206.49 | 91.93 | 56.61 | ||||
90-4 | 195.64 | 117.74 | 102.27 |
Fracture Angle | Specimen Number | Incident Energy Ei/J | Reflected Energy Er/J | Transmitted Energy Et/J | Dissipation Rate Na | Transmissivity Nt | Reflected Rate Nr | |||
---|---|---|---|---|---|---|---|---|---|---|
Test | Mean | Test | Mean | Test | Mean | |||||
0 | 0-2 | 51.62 | 14.23 | 32.32 | 0.098 | 0.27 | 0.63 | 0.43 | 0.28 | 0.30 |
0-3 | 82.43 | 27.34 | 23.44 | 0.38 | 0.28 | 0.33 | ||||
0-4 | 87.61 | 24.52 | 34.05 | 0.33 | 0.39 | 0.28 | ||||
30 | 30-1 | 81.21 | 22.91 | 34.45 | 0.30 | 0.29 | 0.42 | 0.40 | 0.28 | 0.31 |
30-2 | 72.19 | 23.77 | 23.75 | 0.34 | 0.33 | 0.33 | ||||
30-3 | 72.89 | 23.12 | 34.41 | 0.21 | 0.47 | 0.32 | ||||
30-4 | 82.27 | 24.17 | 32.86 | 0.31 | 0.40 | 0.30 | ||||
45 | 45-2 | 73.24 | 18.38 | 29.97 | 0.34 | 0.33 | 0.41 | 0.30 | 0.25 | 0.37 |
45-4 | 104.89 | 50.66 | 21.09 | 0.32 | 0.20 | 0.48 | ||||
60 | 60-1 | 72.26 | 15.07 | 40.36 | 0.23 | 0.27 | 0.56 | 0.40 | 0.21 | 0.33 |
60-2 | 66.42 | 16.36 | 37.99 | 0.18 | 0.57 | 0.25 | ||||
60-3 | 95.43 | 42.61 | 15.53 | 0.39 | 0.16 | 0.45 | ||||
60-4 | 84.15 | 34.25 | 25.37 | 0.29 | 0.30 | 0.41 | ||||
90 | 90-1 | 110.08 | 51.60 | 16.61 | 0.38 | 0.31 | 0.15 | 0.30 | 0.47 | 0.39 |
90-2 | 76.95 | 25.30 | 33.50 | 0.24 | 0.44 | 0.33 | ||||
90-3 | 82.27 | 24.07 | 23.60 | 0.42 | 0.29 | 0.29 | ||||
90-4 | 79.44 | 36.30 | 25.40 | 0.22 | 0.32 | 0.46 |
/MPa | /MPa | /MPa | /MPa | ||
---|---|---|---|---|---|
−7.84 | 0 | −5.23 | 7.84 | −0.04 | 0.06 |
0 | 122.18 | 40.72 | 122.18 | 0.33 | 1 |
2.5 | 133.56 | 46.18 | 131.06 | 0.38 | 1.07 |
5 | 144.59 | 51.53 | 139.59 | 0.42 | 1.14 |
7.5 | 169.73 | 61.57 | 162.23 | 0.50 | 1.33 |
10 | 182.91 | 67.64 | 172.91 | 0.55 | 1.42 |
12.5 | 191.62 | 72.21 | 179.12 | 0.59 | 1.47 |
Material Parameter | /MPa | /GPa | /GPa | ||||
---|---|---|---|---|---|---|---|
Sandstone | 122.18 | 26.23 | 0.22 | 2.511 | 1.025 | 2700 | 3.04 |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
21.42 GPa | 18.31 GPa | 1 | |||
3 | 0.0841 GPa | 18.31 GPa | |||
0.85 | 0.122 GPa | 0.16 | |||
1.17 | 0.75 | 3 × 10−5 ms−1 | |||
0.06 | 0.4 | 0.6 | |||
3.51 GPa | 10.75 | 3 × 1022 | |||
0.5 | 3 × 10−6 ms−1 | 2.05 | |||
1.17 | 0.014 | 0.01 | |||
0.01 | 0 GPa | 0.04 | |||
0.0105 | 0.6805 | 2.511 g·cm−3 | |||
6 GPa | 1.62 | / | / | ||
1.084 | 3×1022 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.-Y.; Liu, D.-S.; Gao, Z.-H.; Chi, E.-A.; Rao, J.-Y.; Hu, T. Dynamic Failure Characteristics of Sandstone Containing Different Angles of Pre-Existing Crack Defects. Mathematics 2024, 12, 1651. https://doi.org/10.3390/math12111651
Zhou H-Y, Liu D-S, Gao Z-H, Chi E-A, Rao J-Y, Hu T. Dynamic Failure Characteristics of Sandstone Containing Different Angles of Pre-Existing Crack Defects. Mathematics. 2024; 12(11):1651. https://doi.org/10.3390/math12111651
Chicago/Turabian StyleZhou, Hou-You, Dian-Shu Liu, Zheng-Hua Gao, En-An Chi, Jun-Ying Rao, and Tao Hu. 2024. "Dynamic Failure Characteristics of Sandstone Containing Different Angles of Pre-Existing Crack Defects" Mathematics 12, no. 11: 1651. https://doi.org/10.3390/math12111651
APA StyleZhou, H. -Y., Liu, D. -S., Gao, Z. -H., Chi, E. -A., Rao, J. -Y., & Hu, T. (2024). Dynamic Failure Characteristics of Sandstone Containing Different Angles of Pre-Existing Crack Defects. Mathematics, 12(11), 1651. https://doi.org/10.3390/math12111651