Lp-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators
Abstract
:1. Introduction
Main Results
- (a)
- Let with , , and . Then, is bounded on for
- (b)
- Let . The critical space is , while is unbounded on , it is bounded on the Hardy space .
2. -Boundedness of of Order 0
3. -Boundedness of
3.1. A Key Lemma
3.2. Proof of the Main Theorem
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calderón, A.; Vaillancourt, R. On the boundedness of pseudo-differential operators. J. Math. Soc. Jpn. 1971, 23, 274–378. [Google Scholar] [CrossRef]
- Calderón, A.; Vaillancourt, R. A class of bounded pseudo-differential operators. Proc. Natl. Acad. Sci. USA 1972, 69, 1185–1187. [Google Scholar] [CrossRef]
- Wang, Z. Singular Integrals of Non-Convolution Type on Product Spaces. 2023. Available online: https://arxiv.org/abs/1409.2212 (accessed on 2 July 2023).
- Fefferman, C. Lp bounds for pseudo-differential operators. Isr. J. Math. 1973, 14, 413–417. [Google Scholar] [CrossRef]
- Müller, D.; Ricci, F.; Stein, E. Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I. Invent. Math. 1995, 119, 199–233. [Google Scholar] [CrossRef]
- Yamazaki, M. The Lp-boundedness of pseudo-differential operators with estimates of parabolic type and product type. Isr. J. Math. 1986, 38, 199–225. [Google Scholar]
- Wang, Z. Regularity of Multi-Parameter Fourier Integral Operator. 2022. Available online: https://arxiv.org/abs/2007.02262 (accessed on 7 June 2022).
- Chen, J.; Ding, W.; Lu, G. Boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces. Forum Math. 2020, 32, 919–936. [Google Scholar] [CrossRef]
- Huang, L.; Chen, J. Boundedness of bi-parameter pseudo-differential operators on bi-parameter α-modulation spaces. Nonlinear Anal. 2019, 180, 20–40. [Google Scholar]
- Xu, C.; Huang, L. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Commun. Pure Appl. Anal. 2021, 20, 801–815. [Google Scholar]
- Hong, Q.; Zhang, L. Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators. Adv. Nonlinear Stud. 2014, 14, 1055–1082. [Google Scholar] [CrossRef]
- Hong, Q.; Zhang, L. Lp estimates for bi-parameter and bilinear Fourier integral operators. Acta Math. Sin. (Engl. Ser.) 2017, 33, 165–186. [Google Scholar] [CrossRef]
- Hong, Q.; Lu, G. Weighted Lp estimates for rough bi-parameter Fourier integral operators. J. Differ. Equ. 2018, 265, 1097–1127. [Google Scholar] [CrossRef]
- Hong, Q.; Lu, G.; Zhang, L. Lp boundedness of rough bi-parameter Fourier integral operators. Forum Math. 2018, 30, 87–107. [Google Scholar] [CrossRef]
- Muscalu, C.; Pipher, J.; Tao, T.; Thiele, C. Bi-parameter paraproducts. Acta Math. 2004, 193, 269–296. [Google Scholar] [CrossRef]
- Muscalu, C.; Pipher, J.; Tao, T.; Thiele, C. Multi-parameter paraproducts. Rev. Mat. Iberoam. 2006, 22, 963–976. [Google Scholar] [CrossRef]
- Fefferman, C.; Stein, E. Hp spaces of several variables. Acta Math. 1972, 129, 137–193. [Google Scholar] [CrossRef]
- John, F.; Nirenberg, L. On functions of bounded mean oscillation. Comm. Pure Appl. Math. 1961, 14, 415–426. [Google Scholar] [CrossRef]
- Stein, E. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J. Lp-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators. Mathematics 2024, 12, 1653. https://doi.org/10.3390/math12111653
Cheng J. Lp-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators. Mathematics. 2024; 12(11):1653. https://doi.org/10.3390/math12111653
Chicago/Turabian StyleCheng, Jinhua. 2024. "Lp-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators" Mathematics 12, no. 11: 1653. https://doi.org/10.3390/math12111653
APA StyleCheng, J. (2024). Lp-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators. Mathematics, 12(11), 1653. https://doi.org/10.3390/math12111653