Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives
Abstract
:1. Introduction
2. Atangana–Baleanu Beta-Derivative and Properties
2.1. Basic Properties of Atangana Beta-Derivative
- (1)
- If f is differentiable, then , i.e., the classical first derivative.
- (2)
- (3)
- (4)
- (5)
- where
- (6)
- If f is differentiable, then .
- (7)
- For a partial derivative, the definition is as follows:
2.2. Some Applications of Beta-Derivatives
3. Exact Solutions of STO Equations by Sardar Subequation Method
3.1. Atangana–Baleanu Beta-Derivative
3.2. Integer-Order Derivative
4. Graphical Results
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
PDE | Partial differential equation |
STO | Sharma–Tasso–Olver |
2D | Two dimensions |
3D | Three dimensions |
References
- Olver, P. Evolution equations possessing infinitely many symmetries. J. Math. Phys. 1977, 18, 1212–1215. [Google Scholar] [CrossRef]
- Wang, M. Higher Burgers equation. Acta Math. Sci. 1986, 6, 355–360. [Google Scholar] [CrossRef]
- Pavani, K.; Raghavendar, K.; Aruna, K. Soliton solutions of the time-fractional Sharma–Tasso–Olver equations arise in nonlinear optics. Opt. Quantum Electron. 2024, 56, 748. [Google Scholar] [CrossRef]
- Khan, K.; Koppelaar, H.; Akbar, M.; Mohyud-Din, S. Analysis of travelling wave solutions of double dispersive Sharma-Tasso-Olver equation. J. Ocean Eng. Sci. 2022, 3, 18. [Google Scholar] [CrossRef]
- Akbar, M.A.; Abdullah, F.A.; Kumar, S.; Khaled, A.G. Assorted soliton solutions to the nonlinear dispersive wave models in inhomogeneous media. Results Phys. 2022, 39, 105720. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Nasreen, N.; Lu, D.; Arshad, M. Arising wave propagation in nonlinear media for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain dynamical model. Phys. A Stat. Mech. Appl. 2020, 538, 122846. [Google Scholar] [CrossRef]
- Johnpillai, A.; Khalique, C. On the solutions and conservation laws for the Sharma-Tasso-Olver equation. Sci. Asia 2014, 40, 451–455. [Google Scholar] [CrossRef]
- Kumar, S.; Khan, I.; Rani, S.; Ghanbari, B. Lie symmetry analysis and dynamics of exact solutions of the (2 + 1)-dimensional nonlinear Sharma–Tasso–Olver equation. Math. Probl. Eng. 2021, 2021, 9961764. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Chen, A. Multi-kink solutions and soliton fission and fusion of the Sharma-Tasso-Olver equation. Phys. Lett. A 2012, 734, 2340–2345. [Google Scholar] [CrossRef]
- Sirisubtawee, S.; Koonprasert, S.; Sungnul, S. New exact solutions of the conformable space-time Sharma–Tasso–Olver equation using two reliable methods. Symmetry 2020, 12, 644. [Google Scholar] [CrossRef]
- Sheikh, M.A.N.; Taher, M.A.; Hossain, M.M.; Akter, S.; Harun-Or-Rashid. Variable coefficient exact solution of Sharma–Tasso–Olver model by enhanced modified simple equation method. Partial Differ. Equ. Appl. Math. 2023, 7, 100527. [Google Scholar] [CrossRef]
- Wazwaz, A. A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 2004, 40, 499–508. [Google Scholar] [CrossRef]
- Bekir, A.; Boz, A. Exact solutions for nonlinear evolution equations using Exp-function method. Phys. Lett. A 2008, 372, 1619–1625. [Google Scholar] [CrossRef]
- Pan, J.; Chen, W. A new auxiliary equation method and its application to the Sharma-Tasso-Olver model. Phys. Lett. A 2009, 373, 3118–3121. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Ashtiani, M.; Babolian, E. Analytic solution of the Sharma-Tasso-Olver equation by homotopy analysis method. Z. Nat. forsch. 2010, 65, 285–290. [Google Scholar] [CrossRef]
- He, J.; Elagan, S.; Li, Z. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376, 257–259. [Google Scholar] [CrossRef]
- Xue, B.; Wu, C.-M. Conservation laws and Darboux transformation for Sharma—Tasso—Olver equation. Commun. Theor. Phys. 2012, 58, 317. [Google Scholar] [CrossRef]
- Shang, Y.; Huang, Y.; Yuan, W. Bäcklund transformations and abundant exact explicit solutions of the Sharma–Tasso–Olver equation. Appl. Math. Comput. 2011, 217, 7172–7183. [Google Scholar] [CrossRef]
- He, Y.; Li, S.; Long, Y. Exact solutions to the Sharma-Tasso-Olver equation by using improved G’/G-expansion method. J. Appl. Math. 2013, 2013, 247234. [Google Scholar] [CrossRef]
- Rahman, N.; Alam, M.; Roshid, H.; Akter, S.; Akbar, M. Application of (−ϕ(ξ))-expansion method to find the exact solutions of Sharma-Tasso-Olver equation. Afr. J. Math. Comput. Sci. Res. 2014, 7, 1–6. [Google Scholar]
- Zhe, Z.; Li, D. The modified multiple (G’/G)-expansion method and its application to Sharma–Tasso–Olver equation. Pramana J. Phys. 2014, 83, 95–105. [Google Scholar] [CrossRef]
- Rawashdeh, M. An efficient approach for time–fractional damped Burger and time–Sharma–Tasso–Olver equations using the FRDTM. Appl. Math. Inf. Sci. 2015, 9, 1239–1246. [Google Scholar]
- Alhakim, L.; Moussa, A. The improved exp(−ϕ(ξ)) fractional expansion method and its application to nonlinear fractional Sharma-Tasso-Olver equation. J. Appl. Comput. Math. 2017, 6, 360. [Google Scholar]
- Bibi, S.; Mohyud-Din, S.T.; Khan, U.; Ahmed, N. Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order. Results Phys. 2017, 7, 4440–4450. [Google Scholar] [CrossRef]
- Gomez, C.; Hernandez, J. Traveling wave solutions for Burgers-Sharma-Tasso-Olver equation with variable coefficients: The improved tanh-coth method vs. exp. function method. J. Math. Anal. 2017, 11, 825–831. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Khodadad, F.S.; Manafian, J. New structure for exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation via conformable fractional derivative. Appl. Appl. Math. 2017, 12, 405–414. [Google Scholar]
- Butt, A.R.; Zaka, J.; Akül, A. New structures for exact solution of nonlinear fractional Sharma–Tasso–Olver equation by conformable fractional derivative. Results Phys. 2023, 50, 106541. [Google Scholar] [CrossRef]
- Fang, T.; Wang, Y.H. Interaction solutions for a dimensionally reduced Hirota bilinear equation. Comput. Math. Appl. 2018, 76, 1476–1485. [Google Scholar] [CrossRef]
- Hao, X.; Liu, Y.; Li, Z.; Ma, W.X. Painlevé analysis, soliton solutions and lump-type solutions of the (3+1)-dimensional generalized KP equation. Comput. Math. App. 2019, 77, 724–730. [Google Scholar] [CrossRef]
- Kang, Z.; Xia, T.; Ma, W. Abundant multi wave solutions to the (3 + 1)-dimensional Sharma-Tasso-Olver-like equation. Proc. Rom. Acad. Ser. A 2019, 20, 115–122. [Google Scholar]
- El-Rashidy, K. New traveling wave solutions for the higher Sharma-Tasso-Olver equation by using extension exponential rational function method. Results Phys. 2020, 17, 103066. [Google Scholar] [CrossRef]
- Li, L.; Wang, M.; Zhang, J. The solutions of initial (-boundary) value problems for Sharma-Tasso-Olver equation. Mathematics 2022, 10, 441. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhuang, J. Dynamics and exact traveling wave solutions of the Sharma–Tasso–Olver–Burgers equation. Symmetry 2022, 14, 1468. [Google Scholar] [CrossRef]
- Han, T.; Jiang, Y. Bifurcation, chaotic pattern and traveling wave solutions for the fractional Bogoyavlenskii equation with multiplicative noise. Phys. Scr. 2024, 99, 035207. [Google Scholar] [CrossRef]
- Aniqa, A.; Ahmad, J. Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G’/G) -expansion method. Ain Shams Eng. J. 2022, 13, 101528. [Google Scholar] [CrossRef]
- Yang, S. Traveling wave solution for Sharma–Tasso–Olver–Burgers (STOB) equation by the (G’/G)-expansion method. Sch. J. Phys. Math. Stat. 2022, 9, 46–51. [Google Scholar] [CrossRef]
- Khalil, T.A.; Badra, N.; Ahmed, H.M.; Rabie, W.B. Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index by Jacobi elliptic function expansion method. Optik 2022, 253, 168540. [Google Scholar] [CrossRef]
- Ozisik, M.; Secer, A.; Bayram, M. On solitary wave solutions for the extended nonlinear Schrödinger equation via the modified F-expansion method. Opt. Quantum Electron. 2023, 55, 215. [Google Scholar] [CrossRef]
- Gu, M.; Peng, C.; Li, Z. Traveling wave solution of (3 + 1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation. AIMS Math. 2024, 9, 6699–6708. [Google Scholar] [CrossRef]
- Yépez-Martínez, H.; Gómez-Aguilar, J.; Baleanu, D. Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 2018, 155, 357–365. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Inc, M.; Baleanu, D. New solitary wave solutions for variants of (3 + 1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations. Front. Phys. 2020, 8, 332. [Google Scholar] [CrossRef]
- Asjad, M.; Inc, M.; Iqbal, I. Exact solutions for new coupled Konno-Oono equation via Sardar subequation method. Opt. Quantum Electron. 2022, 54, 798. [Google Scholar]
- Rahman, H.; Iqbal, I.; Aiadi, S.S.; Mlaiki, N.; Saleem, M. Soliton solutions of Klein–Fock–Gordon equation using Sardar subequation method. Mathematics 2022, 10, 3377. [Google Scholar] [CrossRef]
- Rahman, H.; Asjad, M.; Munawar, N.; Parvaneh, F.; Muhammad, T.; Hamoud, A.; Emadifar, H.; Hamaslh, F.; Azizi, H.; Khademi, M. Traveling wave solutions in the Boussineq equation via Sardar subequation technique. AIMS Math. 2022, 7, 11134–11149. [Google Scholar] [CrossRef]
- Cinar, M.; Secer, A.; Ozisik, M.; Bayram, M. Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar subequation method. Opt. Quantum Electron. 2022, 54, 402. [Google Scholar] [CrossRef]
- Alsharidi, A.K.; Bekir, A. Discovery of new exact wave solutions to the M-fractional complex three coupled Maccari’s system by Sardar subequation scheme. Symmetry 2023, 15, 1567. [Google Scholar] [CrossRef]
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar subequation method. Results Phys. 2024, 59, 107593. [Google Scholar] [CrossRef]
- Pleumpreedaporn, C.; Pleumpreedaporn, S.; Moore, E.J.; Sirisubtawee, S.; Sungnul, S. Novel exact traveling wave solutions for the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation with Atangana’s space and time beta-derivatives via the Sardar subequation method. Thai J. Math 2024, 22, 1–18. [Google Scholar]
- Hussain, R.; Imtiaz, A.; Rasool, T.; Rezazadeh, H.; Inc, M. Novel exact and solitary solutions of conformable Klein–Gordon equation via Sardar subequation method. J. Ocean Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Syam, M.I.; Al-Refai, M. Fractional Differential Equations with Atangana-Baleanu Fractional Derivative: Analysis and Applications. Chaos Soliton Fract. X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Uddin, M.F.; Hafez, M.G.; Hammouch, Z.; Baleanu, D. Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness. Waves Random Complex Media 2021, 31, 2135–2149. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M.; Gómez-Aguilar, J. Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives. Optik 2020, 224, 165425. [Google Scholar] [CrossRef]
- Rafiq, M.; Majeed, A.; Inc, M.; Kamran, M.; Baleanu, D. New traveling wave solutions for space-time fractional modified equal width equation with beta derivative. Phys. Lett. A 2021, 446, 128281. [Google Scholar] [CrossRef]
- Ozkan, E. New exact solutions of some important nonlinear fractional partial differential equations with beta derivative. Fractal Fract. 2022, 6, 173. [Google Scholar] [CrossRef]
- Akbulut, A.; Islam, S. Study on the Biswas–Arshed equation with the beta time derivative. Int. J. Appl. Comput. Math. 2022, 8, 167. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Caputo, M. Linear model of dissipation whose Q is almost frequency independent. II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Kilbas, A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ahmed, I.; Kumam, P.; Jarad, F.; Borisut, P.; Jirakitpuwapat, W. On Hilfer generalized proportional fractional derivative. Adv. Differ. Equ. 2020, 2020, 329. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Hattaf, K. On the stability and numerical scheme of fractional differential equations with application to biology. Computation 2022, 10, 97. [Google Scholar] [CrossRef]
- Khalid, H. A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels. Fractal Fract. 2023, 7, 395. [Google Scholar] [CrossRef]
- Hanif, A.; Butt, A.I.K.; Ismaeel, T. Fractional optimal control analysis of COVID-19 and dengue fever co-infection model with Atangana-Baleanu derivative. AIMS Math. 2024, 9, 5171–5203. [Google Scholar] [CrossRef]
- Malingam, P.; Wongsasinchai, P.; Sirisubtawee, S.; Koonprasert, S. Exact Solutions of the Paraxial Wave Dynamical Model in Kerr Media with Truncated M-fractional Derivative using the (G′/G, 1/G)-Expansion Method. WSEAS Trans. Syst. Control 2023, 18, 498–512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleumpreedaporn, C.; Moore, E.J.; Sirisubtawee, S.; Khansai, N.; Pleumpreedaporn, S. Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives. Mathematics 2024, 12, 2155. https://doi.org/10.3390/math12142155
Pleumpreedaporn C, Moore EJ, Sirisubtawee S, Khansai N, Pleumpreedaporn S. Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives. Mathematics. 2024; 12(14):2155. https://doi.org/10.3390/math12142155
Chicago/Turabian StylePleumpreedaporn, Chanidaporn, Elvin J. Moore, Sekson Sirisubtawee, Nattawut Khansai, and Songkran Pleumpreedaporn. 2024. "Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives" Mathematics 12, no. 14: 2155. https://doi.org/10.3390/math12142155
APA StylePleumpreedaporn, C., Moore, E. J., Sirisubtawee, S., Khansai, N., & Pleumpreedaporn, S. (2024). Exact Solutions for the Sharma–Tasso–Olver Equation via the Sardar Subequation Method with a Comparison between Atangana Space–Time Beta-Derivatives and Classical Derivatives. Mathematics, 12(14), 2155. https://doi.org/10.3390/math12142155