Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach
Abstract
:1. Introduction
2. Preliminaries
2.1. Koopman Operators
2.2. Neural Operator
2.3. Trajectory Prediction
3. Deep Embedding Koopman Neural Operator (DE-KNO)
3.1. General Framework
Algorithm 1 DE-KNO |
|
3.2. Encoder
3.3. Approximator
3.4. Decoder
4. Experimental Studies
4.1. Preparation
- (1)
- KNF (Koopman Neural Forecaster) [57] is a novel method rooted in Koopman theory adept at accurately predicting time series even amidst distribution changes. It harnesses the Koopman matrix to capture global behaviors that evolve over time, adapting to local distribution shifts.
- (2)
- Koopa [56] consists of modular Koopman Predictors (KPs) designed to hierarchically describe and propel the dynamics of time series. It employs Fourier analysis for disentangling dynamics. For time-invariant behaviors, the model learns Koopman embedding and linear operators to uncover implicit transitions underpinning long-term series.
- (3)
- The FiLM (Frequency Improved Legendre Memory) [58] architecture integrates a mixture of experts, tailored for robust multiscale feature extraction from time series. It reconfigures the Legendre Projection Unit (LPU), making it a versatile tool for data representation. This adaptation allows any time series forecasting model to utilize the LPU effectively while preserving historical information.
- (4)
- Timesblock, part of timesnet [59], adaptively transforms 1D time series into a set of 2D tensors based on learned periods. It further captures intra-period and inter-period variations in the 2D space using a parameter-efficient inception block.
- (5)
- Autoformer [54] preserves the residual and encoder–decoder structure of Transformers but innovates with a decomposition forecasting architecture. It embeds proposed decomposition blocks as inner operators to progressively isolate long-term trend information from predicted hidden variables. Through replacing self-attention with an auto-correlation mechanism, Autoformer identifies sub-series similarities based on periodicity and aggregates similar sub-series from previous periods.
4.2. Process
4.3. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y. Trajectory Data Mining: An Overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [Google Scholar] [CrossRef]
- Georgiou, H.; Karagiorgou, S.; Kontoulis, Y.; Pelekis, N.; Petrou, P.; Scarlatti, D.; Theodoridis, Y. Moving objects analytics: Survey on future location & trajectory prediction methods. arXiv 2018, arXiv:1807.04639. [Google Scholar]
- Gavrilovski, A.; Jimenez, H.; Mavris, D.N.; Rao, A.H.; Shin, S.; Hwang, I.; Marais, K. Challenges and Opportunities in Flight Data Mining: A Review of the State of the Art. In Proceedings of the AIAA Infotech@ Aerospace, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Budalakoti, S.; Srivastava, A.; Otey, M. Anomaly Detection and Diagnosis Algorithms for Discrete Symbol Sequences with Applications to Airline Safety. IEEE Trans. Syst. Man Cybern. Part Appl. Rev. 2009, 39, 101–113. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, X. (Eds.) Computing with Spatial Trajectories; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.; Yang, Z.; Zhou, Z.; Zhang, L.; Chen, H. A Survey on Trajectory-Prediction Methods for Autonomous Driving. IEEE Trans. Intell. Veh. 2022, 7, 652–674. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Zeng, W.; Chu, X.; Xu, Z.; Liu, Y.; Quan, Z. Aircraft 4D Trajectory Prediction in Civil Aviation: A Review. Aerospace 2022, 9, 91. [Google Scholar] [CrossRef]
- Tang, J. Conflict Detection and Resolution for Civil Aviation: A Literature Survey. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 20–35. [Google Scholar] [CrossRef]
- Ayhan, S.; Samet, H. Aircraft Trajectory Prediction Made Easy with Predictive Analytics. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 21–30. [Google Scholar] [CrossRef]
- Zhang, X.; Mahadevan, S. Bayesian Neural Networks for Flight Trajectory Prediction and Safety Assessment. Decis. Support Syst. 2020, 131, 113246. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, D.; Zhou, S.; Zhang, J.; Lin, Y. Flight Trajectory Prediction Enabled by Time-Frequency Wavelet Transform. Nat. Commun. 2023, 14, 5258. [Google Scholar] [CrossRef]
- Lu, J.; Pan, L.; Deng, J.; Chai, H.; Ren, Z.; Shi, Y. Deep Learning for Flight Maneuver Recognition: A Survey. Electron. Res. Arch. 2023, 31, 75–102. [Google Scholar] [CrossRef]
- Boril, J.; Jirgl, M.; Jalovecky, R. Using Aviation Simulation Technologies for Pilot Modelling and Flight Training Assessment. Adv. Mil. Technol. 2017, 12, 147–161. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P. Time Series Analysis Methods and Applications for Flight Data; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an Intermittently Forced Linear System. Nat. Commun. 2017, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human Motion Trajectory Prediction: A Survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Schwarting, W.; Alonso-Mora, J.; Paull, L.; Karaman, S.; Rus, D. Safe Nonlinear Trajectory Generation for Parallel Autonomy with a Dynamic Vehicle Model. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2994–3008. [Google Scholar] [CrossRef]
- Kobilarov, M. Nonlinear Trajectory Control of Multi-body Aerial Manipulators. J. Intell. Robot. Syst. 2014, 73, 679–692. [Google Scholar] [CrossRef]
- Li, D.; Du, L. AUV Trajectory Tracking Models and Control Strategies: A Review. J. Mar. Sci. Eng. 2021, 9, 1020. [Google Scholar] [CrossRef]
- Allgöwer, F.; Findeisen, R.; Nagy, Z. Nonlinear Model Predictive Control: From Theory to Application. J. Chin. Inst. Chem. Eng. 2004, 35, 299–315. [Google Scholar]
- Koopman, B.O. Hamiltonian Systems and Transformation in Hilbert Space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef]
- Koopman, B.O.; Neumann, J. Dynamical Systems of Continuous Spectra. Proc. Natl. Acad. Sci. USA 1932, 18, 255–263. [Google Scholar] [CrossRef]
- Neumann, J.v. Physical Applications of the Ergodic Hypothesis. Proc. Natl. Acad. Sci. USA 1932, 18, 263–266. [Google Scholar] [CrossRef]
- Neumann, J.V. Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA 1932, 18, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Lange, H.; Brunton, S.L.; Kutz, N. From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction. arXiv 2020, arXiv:2004.00574. [Google Scholar] [CrossRef]
- Daneshfar, F.; Soleymanbaigi, S.; Nafisi, A.; Yamini, P. Elastic deep autoencoder for text embedding clustering by an improved graph regularization. Expert Syst. Appl. 2024, 238, 121780. [Google Scholar] [CrossRef]
- Nasiri, E.; Berahmand, K.; Rostami, M.; Dabiri, M. A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding. Comput. Biol. Med. 2021, 137, 104772. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.J. Dynamic Mode Decomposition of Numerical and Experimental Data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [Google Scholar] [CrossRef]
- Klus, S.; Nüske, F.; Hamzi, B. Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator. Entropy 2020, 22, 722. [Google Scholar] [CrossRef]
- Burov, D.; Giannakis, D.; Manohar, K.; Stuart, A. Kernel Analog Forecasting: Multiscale Test Problems. Multiscale Model. Simul. 2021, 19, 1011–1040. [Google Scholar] [CrossRef]
- Baddoo, P.J.; Herrmann, B.; McKeon, B.J.; Brunton, S.L. Kernel Learning for Robust Dynamic Mode Decomposition: Linear and Nonlinear Disambiguation Optimization. Proc. R. Soc. 2022, 478, 20210830. [Google Scholar] [CrossRef]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kutz, J.N. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. PLoS ONE 2016, 11, e0150171. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, J.P.; Ruelle, D. Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 1985, 57, 617–656. [Google Scholar] [CrossRef]
- Zhu, R.; Cao, Y.; Kang, Y.; Wang, X. The Deep Input-Koopman Operator for Nonlinear Systems. In Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13–16 December 2018, Proceedings, Part VII 25; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Lusch, B.; Kutz, J.N.; Brunton, S.L. Deep Learning for Universal Linear Embeddings of Nonlinear Dynamics. Nat. Commun. 2018, 9, 4950. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Chou, C.A. A Koopman-operator-theoretical Approach for Anomaly Recognition and Detection of Multi-Variate EEG System. Biomed. Signal Process. Control 2021, 69, 102911. [Google Scholar] [CrossRef]
- Ishikawa, I.; Hashimoto, Y.; Ikeda, M.; Kawahara, Y. Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces. arXiv 2024, arXiv:2403.02524. [Google Scholar]
- Bevanda, P.; Sosnowski, S.; Hirche, S. Koopman Operator Dynamical Models: Learning, Analysis and Control. Annu. Rev. Control 2021, 52, 197–212. [Google Scholar] [CrossRef]
- Xiong, W.; Huang, X.; Zhang, Z.; Deng, R.; Sun, P.; Tian, Y. Koopman Neural Operator as a Mesh-Free Solver of Non-Linear Partial Differential Equations. arXiv 2023, arXiv:2301.10022. [Google Scholar] [CrossRef]
- Xiong, W.; Ma, M.; Huang, X.; Zhang, Z.; Sun, P.; Tian, Y. KoopmanLab: Machine Learning for Solving Complex Physics Equations. arXiv 2023, arXiv:2301.01104. [Google Scholar] [CrossRef]
- Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv 2020, arXiv:2010.08895. [Google Scholar]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Graph Kernel Network for Partial Differential Equations. arXiv 2020, arXiv:2003.03485. [Google Scholar] [CrossRef]
- Lu, L.; Jin, P.; Karniadakis, G.E. DeepONet: Learning Nonlinear Operators for Identifying Differential Equations Based on the Universal Approximation Theorem of Operators. Nat. Mach. Intell. 2021, 3, 218–229. [Google Scholar] [CrossRef]
- Shafienya, H.; Regan, A.C. 4D flight trajectory prediction using a hybrid Deep Learning prediction method based on ADS-B technology: A case study of Hartsfield–Jackson Atlanta International Airport (ATL). Transp. Res. Part C Emerg. Technol. 2022, 144, 103878. [Google Scholar] [CrossRef]
- Jia, P.; Chen, H.; Zhang, L.; Han, D. Attention-LSTM based prediction model for aircraft 4-D trajectory. Sci. Rep. 2022, 12, 15533. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.C.; Deng, C.; Hwang, I. Hybrid machine learning and estimation-based flight trajectory prediction in terminal airspace. IEEE Access 2021, 9, 151186–151197. [Google Scholar] [CrossRef]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. arXiv 2021, arXiv:2012.07436. [Google Scholar] [CrossRef]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. arXiv 2018, arXiv:1703.07015. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar]
- Lu, J.; Chai, H.; Jia, R. A General Framework for Flight Maneuvers Automatic Recognition. Mathematics 2022, 10, 1196. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Wang, J.; Long, M. Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors. arXiv 2023, arXiv:2305.18803. [Google Scholar] [CrossRef]
- Wang, R.; Dong, Y.; Arik, S.Ö.; Yu, R. Koopman neural forecaster for time series with temporal distribution shifts. arXiv 2022, arXiv:2210.03675. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Sun, L.; Yao, T.; Yin, W.; Jin, R. Film: Frequency improved legendre memory model for long-term time series forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 12677–12690. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d-variation modeling for general time series analysis. In Proceedings of the Eleventh International Conference on Learning Representations, Virtual, 25–29 April 2022. [Google Scholar]
Model | Koopa | KNF | Dlinear | LSTM | FiLM | TimesNet | Autoformer | DE-KNO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DataSets | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
CAFUC | 0.098 | 0.194 | 0.589 | 0.874 | 0.736 | 0.680 | 0.350 | 0.403 | 0.851 | 0.640 | 0.197 | 0.284 | 0.592 | 0.597 | 0.117 | 0.174 |
Lorenz | 0.187 | 0.270 | 0.935 | 0.917 | 0.873 | 0.749 | 0.126 | 0.223 | 1.152 | 0.846 | 0.491 | 0.681 | 1.006 | 0.789 | 0.008 | 0.059 |
Rossler | 0.353 | 0.173 | 1.480 | 1.322 | 1.801 | 0.636 | 0.007 | 0.039 | 2.303 | 0.784 | 0.017 | 0.129 | 1.916 | 0.747 | 0.003 | 0.003 |
ETT | 0.156 | 0.254 | 0.533 | 0.061 | 0.396 | 0.430 | 0.155 | 0.256 | 0.398 | 0.489 | 0.366 | 0.479 | 0.525 | 0.479 | 0.148 | 0.246 |
Electricity | 0.191 | 0.246 | 0.936 | 1.227 | 0.224 | 0.316 | 0.879 | 0.649 | 0.253 | 0.272 | 1.755 | 1.363 | 0.263 | 0.314 | 0.287 | 0.366 |
Exchange | 0.196 | 0.317 | 0.689 | 0.599 | 0.182 | 0.315 | 0.109 | 0.235 | 0.278 | 0.397 | 0.382 | 0.478 | 0.669 | 0.612 | 0.010 | 0.046 |
ILI | 1.797 | 0.887 | 2.969 | 1.339 | 2.563 | 1.197 | 1.060 | 0.0.875 | 4.089 | 1.451 | 2.167 | 1.047 | 2.462 | 1.082 | 0.369 | 0.481 |
Traffic | 0.464 | 0.296 | 0.687 | 0.437 | 0.459 | 0.371 | 0.439 | 0.390 | 0.467 | 0.291 | 0.647 | 0.392 | 0.710 | 0.397 | 0.168 | 0.259 |
Weather | 0.198 | 0.269 | 0.483 | 0.479 | 0.240 | 0.279 | 0.049 | 0.148 | 0.233 | 0.274 | 0.291 | 0.297 | 0.336 | 0.383 | 0.006 | 0.032 |
ECG | 0.750 | 0.510 | 3.156 | 2.397 | 0.950 | 0.550 | 0.871 | 0.499 | 0.854 | 0.560 | 1.914 | 1.148 | 0.807 | 0.533 | 0.717 | 0.497 |
EGG | 0.507 | 0.519 | 2.234 | 2.505 | 0.528 | 0.520 | 0.925 | 0.621 | 0.591 | 0.561 | 2.033 | 1.676 | 0.663 | 0.602 | 0.327 | 0.444 |
Dataset | Time Series | Embedded Attractor | Koopman K | Reconstructed Attractor | Prediction Attractor |
---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Jiang, J.; Bai, Y. Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach. Mathematics 2024, 12, 2162. https://doi.org/10.3390/math12142162
Lu J, Jiang J, Bai Y. Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach. Mathematics. 2024; 12(14):2162. https://doi.org/10.3390/math12142162
Chicago/Turabian StyleLu, Jing, Jingjun Jiang, and Yidan Bai. 2024. "Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach" Mathematics 12, no. 14: 2162. https://doi.org/10.3390/math12142162
APA StyleLu, J., Jiang, J., & Bai, Y. (2024). Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach. Mathematics, 12(14), 2162. https://doi.org/10.3390/math12142162