Collision-Free Trajectory Planning Optimization Algorithms for Two-Arm Cascade Combination System
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review of Motion Planning
1.3. Problem Formulation
2. Screw-Based Inverse Kinematics Model of TACCS
3. Minimum Distance Calculation Based on Hybrid Geometric Envelope
4. Single and Bi-Layer Optimization Models and Algorithms
5. Verification Based on Simulation Cases
6. Conclusions and Future Works
6.1. Conclusions
- (1)
- The reasonable PSO parameters are selected to perform optimizations of two algorithms, both considering their influences on convergence time and optimization effect. Moreover, a box selection principle is designed to determine the allowable ranges of motion variables of the first level arm, which can further improve the execution speed of algorithms by sacrificing very little workspace. The above strategies can help ensure and improve the optimization performances of two algorithms.
- (2)
- The performance indexes are taken as the average value and dispersion of convergence times of 30 executions, which are obtained in two example cases and based on two algorithms. The comparison of performance indexes indicates that the bi-layer optimization has a higher convergence speed than the single optimization, which can be increased by more than 60%, and the randomness of the PSO iterations has less of an impact on the convergence speed of the bi-layer optimization.
- (3)
- The optimal results based on two algorithms are compared to show the significance of this work. The results indicate that values of motion parameters and shortest distances during the whole motion are less than their corresponding limits given in constraints; additionally, the overall optimization objective based on the bi-layer optimization is smaller than that based on the single optimization. Combining with the comparison result of convergence speed, it can be concluded that the bi-layer optimization has a higher execution efficiency under the premise of ensuring the optimization effect.
6.2. Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
TACCS | Two-arm cascade combination system: a system that one manipulator is mounted at the end effector of the other manipulator. |
IK | Inverse kinematics: a mapping from the end-effector pose to the angular displacements of joints for one manipulator. |
DOFs | Degrees of freedom. |
BCF | Base coordinate frame of the manipulator. |
SMP | Motion planning algorithms of two subsystems are carried separately for the mobile manipulator. |
WMP | Motion planning of the high-DOFs system is carried in a whole. |
A* algorithm | A-star algorithm: a heuristic search algorithm to find the shortest path from the starting point to the target point in a graph. |
RRT | Rapidly exploring random trees: build a tree by random sampling and gradually expand the tree to approach the target point, eventually finding a viable path from the starting point to the end point. |
PRM | Probabilistic roadmap: the possible motion path of the robot is constructed by probabilistically sampling points in the configuration space and establishing edges between the connectable points. |
PSO | Particle swarm optimization. |
PSO-WOA | A novel hybrid heuristic algorithm, which combined PSO and whale optimization algorithm. |
GMOPSO | A modified multi-objective PSO algorithm. |
CF-TEM | A collision-free and time–energy–minimum trajectory planning optimization method. |
EECF | End-effector coordinate frame of the manipulator. |
3D coordinate | Three-dimensional coordinate. |
4D vector | Four-dimensional vector. |
Appendix A. Optimization Algorithms
Algorithm A1 Pseudo Codes of the Single Optimization Algorithm | |
1. | Input: |
2. | PSO parameters setting , , , , ; |
3. | Initialize: |
4. | while count 15 do |
5. | for do |
6. | Calculate , |
7. | Calculate , |
8. | if then |
9. | Determine ; |
10. | Determine ; |
11. | Calculate and . |
12. | Calculate and |
13. | Calculate and . |
14. | Calculate and |
15. | Calculate and . |
16. | Calculate and |
17. | Calculate |
18. | Calculate |
19. | if |
20. | Calculate , |
21. | if then |
22. | ; . |
23. | end if |
24. | end if |
25. | end if |
26. | end for |
27. | if then |
28. | ; . |
29. | end if |
30. | if then |
31. | count = count + 1 |
32. | else |
33. | count = 1 |
34. | end if |
35. | Update the current flying velocities and positions of all particles; |
36. | end while |
Algorithm A2 Pseudo Codes of the Bi-Layer Optimization Algorithm | |
1. | Input: |
2. | PSO parameters setting , , , , ; |
3. | Initialize: |
4. | while condition 0 do |
5. | while count1 15 do |
6. | for do |
7. | Calculate , |
8. | Calculate , |
9. | if then |
10. | Calculate |
11. | if then |
12. | Calculate , |
13. | if then |
14. | ; . |
15. | end if |
16. | end if |
17. | end if |
18. | end for |
19. | if then |
20. | ; . |
21. | end if |
22. | if then |
23. | count1 = count1 + 1 |
24. | else |
25. | count1 = 1 |
26. | end if |
27. | Update the current flying velocities and positions of all particles; |
28. | end while |
29. | Calculate |
30. | Calculate |
31. | if then |
32. | condition = 1 |
33. | end if |
34. | end while |
35. | Initialize: |
36. | while count2 15 do |
37. | for do |
38. | Determine ; |
39. | Calculate and . |
40. | Calculate and . |
41. | Calculate and . |
42. | Calculate |
43. | if then |
44. | Calculate , |
45. | if then |
46. | ; . |
47. | end if |
48. | end if |
49. | end for |
50. | if then |
51. | ; . |
52. | end if |
53. | if then |
54. | count2 = count2 + 1 |
55. | else |
56. | count2 = 1 |
57. | end if |
58. | Update the current flying velocities and positions of all particles; |
59. | end while |
60. | Initialize: |
61. | while count3 15 do |
62. | for do |
63. | Determine ; |
64. | Calculate and |
65. | Calculate and |
66. | Calculate and |
67. | Calculate |
68. | if then |
69. | Calculate , |
70. | if then |
71. | ; . |
72. | end if |
73. | end if |
74. | end for |
75. | if then |
76. | ; . |
77. | end if |
78. | if then |
79. | count3 = count3 + 1 |
80. | else |
81. | count3 = 1 |
82. | end if |
83. | Update the current flying velocities and positions of all particles; |
84. | end while |
Appendix B. Experimental Settings
Structures | Characteristic Points | Coordinate | Radius/mm (Number of Edges) | |||
---|---|---|---|---|---|---|
Structure Type | Number | X/mm | Y/mm | Z/mm | ||
Robot | Polygon 1 | 1 | −200 | −200 | 400 | - |
2 | 200 | −200 | 400 | - | ||
3 | 200 | 200 | 400 | - | ||
4 | −200 | 200 | 400 | - | ||
5 | −200 | −200 | 470 | - | ||
6 | 200 | −200 | 470 | / | ||
7 | 200 | 200 | 470 | / | ||
8 | −200 | 200 | 470 | / | ||
Cylinder 2 | 1 | 0 | 0 | 470 | 180 | |
2 | 0 | 0 | 1010 | 180 | ||
Cylinder 3 | 1 | 0 | 0 | 1010 | 180 | |
2 | 0 | 405 | 1010 | 180 | ||
Cylinder 4 | 1 | 0 | 405 | 1010 | 198 | |
2 | 0 | 740 | 1010 | 198 | ||
Cylinder 5 | 1 | 0 | 540 | 1010 | 198 | |
2 | 0 | 540 | 2504 | 198 | ||
Cylinder 6 | 1 | 0 | 405 | 2504 | 198 | |
2 | 0 | 740 | 2504 | 198 | ||
Cylinder 7 | 1 | 0 | 405 | 2504 | 180 | |
2 | 0 | 0 | 2504 | 180 | ||
Cylinder 8 | 1 | 0 | 0 | 2504 | 180 | |
2 | 0 | 0 | 3764 | 180 | ||
Cylinder 9 | 1 | 0 | −270 | 3764 | 180 | |
2 | 0 | 270 | 3764 | 180 | ||
Cylinder 10 | 1 | 0 | 0 | 3764 | 153 | |
2 | 0 | 0 | 4034 | 153 | ||
Cylinder 11 | 1 | 0 | 0 | 4034 | 153 | |
2 | 0 | 0 | 4366 | 153 | ||
Polygon 12 | 1 | −200 | −200 | 4366 | / | |
2 | 200 | −200 | 4366 | / | ||
3 | 200 | 200 | 4366 | / | ||
4 | −200 | 200 | 4366 | / | ||
5 | −200 | −200 | 4516 | / | ||
6 | 200 | −200 | 4516 | / | ||
7 | 200 | 200 | 4516 | / | ||
8 | −200 | 200 | 4516 | / | ||
Cylinder 13 | 1 | 0 | 0 | 4516 | 100 | |
2 | 0 | 0 | 4816 | 100 | ||
Cylinder 14 | 1 | 0 | 0 | 4816 | 100 | |
2 | 0 | 225 | 4816 | 100 | ||
Cylinder 15 | 1 | 0 | 415 | 4816 | 110 | |
2 | 0 | 225 | 4816 | 110 | ||
Cylinder 16 | 1 | 0 | 300 | 4816 | 110 | |
2 | 0 | 300 | 5646 | 110 | ||
Cylinder 17 | 1 | 0 | 415 | 5646 | 110 | |
2 | 0 | 225 | 5646 | 110 | ||
Cylinder 18 | 1 | 0 | 0 | 5646 | 100 | |
2 | 0 | 225 | 5646 | 100 | ||
Cylinder 19 | 1 | 0 | 0 | 5646 | 100 | |
2 | 0 | 0 | 6346 | 100 | ||
Cylinder 20 | 1 | 0 | −150 | 6346 | 100 | |
2 | 0 | 150 | 6346 | 100 | ||
Cylinder 21 | 1 | 0 | 0 | 6346 | 85 | |
2 | 0 | 0 | 6496 | 85 | ||
Cylinder 22 | 1 | 0 | 0 | 6496 | 85 | |
2 | 0 | 0 | 6680 | 85 | ||
Obstacles | Polygonal obstacles 1 (Cases 1,2) | 1 | 850 | 450 | 500 | / |
2 | 1150 | 450 | 500 | / | ||
3 | 1150 | 750 | 500 | / | ||
4 | 850 | 750 | 500 | / | ||
5 | 850 | 450 | 1300 | / | ||
6 | 1150 | 450 | 1300 | / | ||
7 | 1150 | 750 | 1300 | / | ||
8 | 850 | 750 | 1300 | / | ||
Polygonal obstacles 2 (Cases 1,2) | 1 | 1840 | −660 | 500 | / | |
2 | 2160 | −660 | 500 | / | ||
3 | 2160 | −340 | 500 | / | ||
4 | 1840 | −340 | 500 | / | ||
5 | 1840 | −660 | 1500 | / | ||
6 | 2160 | −660 | 1500 | / | ||
7 | 2160 | −340 | 1500 | / | ||
8 | 1840 | −340 | 1500 | / | ||
Cylindrical obstacles 3 (Cases 1,2) | 1 | 800 | −500 | 550 | 200 (= 12) | |
2 | 800 | −500 | 1300 | 200 (= 12) | ||
Cylindrical obstacles 4 (Cases 1,2) | 1 | 1800 | 500 | 550 | 200 (= 12) | |
2 | 1800 | 500 | 1500 | 200 (= 12) | ||
Polygonal obstacles 5 (Case 1) | 1 | 2850 | −150 | 700 | / | |
2 | 3150 | −150 | 700 | / | ||
3 | 3150 | 150 | 700 | / | ||
4 | 2850 | 150 | 700 | / | ||
5 | 2850 | −150 | 850 | / | ||
6 | 3150 | −150 | 850 | / | ||
7 | 3150 | 150 | 850 | / | ||
8 | 2850 | 150 | 850 | / | ||
Polygonal obstacles 6 (Case 1) | 1 | 3580 | −120 | 700 | / | |
2 | 3820 | −120 | 700 | / | ||
3 | 3820 | 120 | 700 | / | ||
4 | 3580 | 120 | 700 | / | ||
5 | 3580 | −120 | 1100 | / | ||
6 | 3820 | −120 | 1100 | / | ||
7 | 3820 | 120 | 1100 | / | ||
8 | 3580 | 120 | 1100 | / | ||
Cylindrical obstacles 7 (Case 1) | 1 | 3000 | −550 | 550 | 150 (= 12) | |
2 | 3000 | −550 | 1000 | 150 (= 12) | ||
Cylindrical obstacles 8 (Case 1) | 1 | 3000 | 550 | 550 | 150 (= 12) | |
2 | 3000 | 550 | 1000 | 150 (= 12) | ||
Polygonal obstacles 9 (Case 2) | 1 | 2850 | 388.91 | 601.04 | / | |
2 | 3150 | 388.91 | 601.04 | / | ||
3 | 3150 | 601.04 | 388.91 | / | ||
4 | 2850 | 601.04 | 388.91 | / | ||
5 | 2850 | 494.97 | 707.11 | / | ||
6 | 3150 | 494.97 | 707.11 | / | ||
7 | 3150 | 707.11 | 494.97 | / | ||
8 | 2850 | 707.11 | 494.97 | / | ||
Polygonal obstacles 10 (Case 2) | 1 | 3580 | 410.12 | 579.83 | / | |
2 | 3820 | 410.12 | 579.83 | / | ||
3 | 3820 | 579.83 | 410.12 | / | ||
4 | 3580 | 579.83 | 410.12 | / | ||
5 | 3580 | 692.97 | 862.67 | / | ||
6 | 3820 | 692.97 | 862.67 | / | ||
7 | 3580 | 862.67 | 692.97 | / | ||
8 | 3580 | 862.67 | 692.97 | / | ||
Cylindrical obstacles 11 (Case 2) | 1 | 3000 | 0 | 777.82 | 150 (= 12) | |
2 | 3000 | 318.2 | 1096.02 | 150 (= 12) | ||
Cylindrical obstacles 12 (Case 2) | 1 | 3000 | 777.82 | 0 | 150 (= 12) | |
2 | 3000 | 1096.02 | 318.2 | 150 (= 12) | ||
Case | Target point | 1 | 3000 | 0 | 950 | / |
2 | 3000 | 636.4 | 676.4 | / |
Appendix C. Experimental Results
References
- Kulakov, F.M. Some Russian research on robotics. Robot. Auton. Syst. 1996, 18, 365–372. [Google Scholar] [CrossRef]
- Thronson, H.; Akin, D.; Grunsfeld, J.; Lester, D. The Evolution and Promise of Robotic In-Space Servicing. In Proceedings of the AIAA Space 2009 Conference & Exposition, Pasadena, CA, USA, 14–17 September 2009. [Google Scholar]
- Jing, Z.; Qiao, L.; Pan, H.; Yang, Y.; Chen, W. An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Sci. China Inf. Sci. 2017, 60, 050201. [Google Scholar] [CrossRef]
- Bluethmann, W.; Ambrose, R.; Diftler, M.; Askew, S.; Magruder, D. Robonaut: A Robot Designed to Work with Humans in Space. Auton. Robot. 2003, 14, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Al-Kamil, S.J.; Szabolcsi, R. Enhancing Mobile Robot Navigation: Optimization of Trajectories through Machine Learning Techniques for Improved Path Planning Efficiency. Mathematics 2024, 12, 1787. [Google Scholar] [CrossRef]
- Dai, Y.; Xiang, C.F.; Zhang, Y.; Jiang, Y.P.; Qu, W.Y.; Zhang, Q.H. A Review of Spatial Robotic Arm Trajectory Planning. Aerospace 2022, 9, 361. [Google Scholar] [CrossRef]
- Shrivastava, A.; Dalla, V.K. Jerk Optimized Motion Planning of Redundant Space Robot Based on Grey-Wolf Optimization Approach. Arab. J. Sci. Eng. 2022, 48, 2687–2699. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, X.; Jiang, Z.; Yang, H.; Chongyang, L.I. Trajectory planning and base attitude restoration of dual-arm free-floating space robot by enhanced bidirectional approach. Front. Mech. Eng. Engl. Ed. 2022, 17, 16. [Google Scholar] [CrossRef]
- Li, Q.H.; Mu, Y.Q.; You, Y.; Zhang, Z.; Feng, C. A Hierarchical Motion Planning for Mobile Manipulator. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 1390–1399. [Google Scholar] [CrossRef]
- Chen, H.L.; Zang, X.Z.; Liu, Y.B.; Zhang, X.H.; Zhao, J. A Hierarchical Motion Planning Method for Mobile Manipulator. Sensors 2023, 23, 6952. [Google Scholar] [CrossRef]
- Rastegarpanah, A.; Gonzalez, H.C.; Stolkin, R. Semi-Autonomous Behaviour Tree-Based Framework for Sorting Electric Vehicle Batteries Components. Robotics 2021, 10, 82. [Google Scholar] [CrossRef]
- Colucci, G.; Botta, A.; Tagliavini, L.; Cavallone, P.; Baglieri, L.; Quaglia, G. Kinematic Modeling and Motion Planning of the Mobile Manipulator Agri.Q for Precision Agriculture. Machines 2022, 10, 321. [Google Scholar] [CrossRef]
- Colucci, G.; Tagliavini, L.; Botta, A.; Baglieri, L.; Quaglia, G. Decoupled motion planning of a mobile manipulator for precision agriculture. Robotica 2023, 41, 1872–1887. [Google Scholar] [CrossRef]
- NithyaP, K.; Priya, P.S.; Benjamin, G.E.; Venkateswaran, J. Optimal Path Planning and Static Obstacle Avoidance for a Dual Arm Manipulator Used in On-Orbit Satellite Servicing. IFAC-Pap. 2020, 53, 189–194. [Google Scholar]
- Yang, H.; Li, D.; Xu, X.R.; Zhang, H. An Obstacle Avoidance and Trajectory Tracking Algorithm for Redundant Manipulator End. IEEE Access 2022, 10, 52912–52921. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, Q.; Wei, X. Obstacle Avoidance Path Planning of Space Robot Based on Improved Particle Swarm Optimization. Symmetry 2022, 14, 938. [Google Scholar] [CrossRef]
- Cui, L.L.; Wang, H.C.; Chen, W.D. Trajectory planning of a spatial flexible manipulator for vibration suppression. Robot. Auton. Syst. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Song, Q.; Li, S.; Bai, Q.; Yang, J.; Zhang, A.; Zhang, X.; Zhe, L. Trajectory Planning of Robot Manipulator Based on RBF Neural Network. Entropy 2021, 23, 1207. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Qiu, C.R.; Zeng, Q.F.; Li, A.P.; Xie, N. Time-energy Optimal Trajectory Planning for Collaborative Welding Robot with Multiple Manipulators. Procedia Manuf. 2020, 43, 527–534. [Google Scholar] [CrossRef]
- Cheng, Q.; Hao, X.L.; Wang, Y.; Xu, W.X.; Li, S.J. Trajectory planning of transcranial magnetic stimulation manipulator based on time-safety collision optimization. Robot. Auton. Syst. 2022, 152, 104039. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Yi, J. Time-Optimal Trajectory Planning for Woodworking Manipulators Using an Improved PSO Algorithm. Appl. Sci. 2023, 13, 10482. [Google Scholar] [CrossRef]
- Sun, J.G.; Han, X.Y.; Zuo, Y.M.; Tian, S.Q.; Song, J.W.; Li, S.H. Trajectory Planning in Joint Space for a Pointing Mechanism Based on a Novel Hybrid Interpolation Algorithm and NSGA-II Algorithm. IEEE Access 2020, 8, 228628–228638. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, J.; Zou, Y.B. Time-optimal and Smooth Trajectory Planning for Multi-axis Motion Systems Based on ISC Similarity. Int. J. Control. Autom. Syst. 2024, 22, 1238–1251. [Google Scholar] [CrossRef]
- Ma, J.F.; Gao, S.; Yan, H.Y.; Lv, Q.; Hu, G.Q. A new approach to time-optimal trajectory planning with torque and jerk limits for robot. Robotics Auton. Syst. 2021, 140, 103744. [Google Scholar] [CrossRef]
- Liu, Z.F.; Xu, J.J.; Yang, C.B.; Zhao, Y.S.; Zhang, T. A TE-E Optimal Planning Technique Based on Screw Theory for Robot Trajectory in Workspace. J. Intell. Robot. Syst. 2018, 91, 363–375. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, G.; Wei, Z.; Huang, Z.; Chen, X. A Time-Optimal Continuous Jerk Trajectory Planning Algorithm for Manipulators. Appl. Sci. 2023, 13, 11479. [Google Scholar] [CrossRef]
- Pu, Q.C.; Xu, X.R.; Li, Q.Q.; Zhang, H. Robotic arm time–jerk optimal trajectory based on improved dingo optimization. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 198. [Google Scholar] [CrossRef]
- Kashima, T.; Isurugi, Y. Trajectory Planning of Manipulators Based on a Minimum-Energy Criterion and Operating Time. J. Robot. Soc. Jpn. 2010, 15, 1012–1018. [Google Scholar] [CrossRef]
- Liu, K.P.; Sui, J.L.; Yue, N.; Liu, S.S. Path planning method of mobile manipulator based on the representation space. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 322–326. [Google Scholar]
- Luna, R.; Moll, M.; Badger, J.; Kavraki, L. A scalable motion planner for high-dimensional kinematic systems. Int. J. Robot. Res. 2020, 39, 361–388. [Google Scholar] [CrossRef]
- Zhang, W.M.; Fu, S.X. Time-optimal Trajectory Planning of Dulcimer Music Robot Based on PSO Algorithm. In Proceedings of the Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 4769–4774. [Google Scholar]
- Dai, J.; Zhang, Y.; Deng, H. Novel Potential Guided Bidirectional RRT* with Direct Connection Strategy for Path Planning of Redundant Robot Manipulators in Joint Space. IEEE Trans. Ind. Electron. 2024, 71, 2737–2747. [Google Scholar] [CrossRef]
- Chen, G.; Luo, N.; Liu, D.; Zhao, Z.H.; Liang, C.C. Path planning for manipulators based on an improved probabilistic roadmap method. Robot. Comput. Integr. Manuf. 2021, 72, 102196. [Google Scholar] [CrossRef]
- Niu, P.; Cheng, Q.; Chen, C.; Yang, C.; Liu, Z. An approach for crucial geometric error analysis and accuracy enhancement of gantry milling machines based on generalized correlation sensitivity. J. Manuf. Process. 2024, 119, 401–413. [Google Scholar] [CrossRef]
- Shi, B.H.; Xu, J.X. Time-Optimal Trajectory Planning of Industrial Robot based on Improved Particle Swarm Optimization Algorithm. In Proceedings of the 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 3683–3688. [Google Scholar]
- Yu, X.L.; Dong, M.S.; Yin, W. Time-optimal trajectory planning of manipulator with simultaneously searching the optimal path. Comput. Commun. 2021, 181, 446–453. [Google Scholar] [CrossRef]
- Jin, R.Y.; Rocco, P.; Geng, Y. Cartesian trajectory planning of space robots using a multi-objective optimization. Aerosp. Sci. Technol. 2021, 108, 106360. [Google Scholar] [CrossRef]
- Li, R.; Liu, M.; Teutsch, J.; Wollherr, D. Constraint trajectory planning for redundant space robot. Neural Comput. Appl. 2023, 35, 24243–24258. [Google Scholar] [CrossRef]
- Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A Multi-Objective Particle Swarm Optimization for Trajectory Planning of Fruit Picking Manipulator. Agronomy 2021, 11, 2286. [Google Scholar] [CrossRef]
- Ding, X.L.; Wang, Y.C.; Wang, Y.B.; Xu, K. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing. Sci. China Technol. Sci. 2021, 64, 462–480. [Google Scholar] [CrossRef]
- Xu, J.J.; Liu, Z.F.; Cheng, Q.; Zhao, Y.S.; Pei, T.H.; Yang, C.B. Models for Three New Screw-based IK Sub-problems Using Geometric Descriptions and Their Applications. Appl. Math. Model. 2018, 67, 399–412. [Google Scholar] [CrossRef]
- Xu, J.J.; Liu, Z.F.; Zhang, C.X.; Yang, C.B.; Pei, Y.H. Minimal distance calculation between the industrial robot and its workspace based on circle/polygon-slices representation. Appl. Math. Model. 2020, 87, 691–710. [Google Scholar] [CrossRef]
Works | Robot Type | DOFs | Planning Methods | Safety | Stability | Efficiency | Energy Consumption | Consideration of Motion Coupling |
---|---|---|---|---|---|---|---|---|
Ref. [9] | Mobile manipulator | 3 + 6 | A* algorithm; Uniform sampling-based algorithm | Yes | No | No | No | No |
Ref. [10] | 3 + 6 | A* algorithm; Sampling-based heuristic algorithm | Yes | No | No | No | No | |
Ref. [11] | 3 + 6 | A* algorithm; RRT | Yes | No | No | No | No | |
Refs. [12,13] | 5 + 6 | A* algorithm; RRT | Yes | No | No | No | Yes | |
Ref. [29] | 3 + 2 | A* algorithm | Yes | No | No | No | Yes | |
Ref. [39] | 3 + 6 | PSO-based optimization | Yes | Yes | Yes | Yes | No | |
Ref. [30] | High-DOFs robot | 14 or 21 | Sampling-based algorithm | Yes | No | No | No | / |
Ref. [31] | 5 | PSO-based optimization | No | Yes | Yes | No | / | |
Ref. [32] | Any | Bidirectional RRT* | Yes | No | No | No | / | |
Ref. [33] | Any | PRM | Yes | No | No | No | / | |
Ref. [37] | 6 #F | CPSO-based optimization | No | Yes | Yes | No | / | |
Ref. [38] | 7 #F | PSO-WOA-based optimization | Yes | Yes | Yes | No | / | |
The proposed method | TACCS | 6 + 6 | PSO-based optimization | Yes | Yes | Yes | Yes | Yes |
Parameters | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) |
---|---|---|---|---|---|---|
First-level arm | 540 | 540 | 1494 | 1260 | 270 | 332 |
Second-level arm | 300 | 300 | 830 | 700 | 150 | 184.5 |
Example Case | Optimization | |||
---|---|---|---|---|
Case 1 | Single | 145.54 | 51.67 | 35.51 |
Bi-layer | 40.12 | 10.58 | 26.39 | |
Difference | 72.43% | 79.52% | 25.68% | |
Case 2 | Single | 52.48 | 18.66 | 35.55 |
Bi-layer | 19.08 | 3.26 | 17.10 | |
Difference | 63.64% | 82.53% | 51.90% |
Example Case | Parameter | Constraints | Bi-Layer Opt. | Single Opt. | Difference 1 | Trad. Opt. | Difference 2 |
---|---|---|---|---|---|---|---|
Case 1 | [1500, 3000] | 2016.08 | 1628.35 | - | 2500.00 | - | |
[−1000, 1000] | 604.94 | 675.01 | - | 815.81 | - | ||
[820, 2200] | 2148.84 | 1797.81 | - | 2097.21 | - | ||
[−180, 180] | 92.66 | −24.45 | - | 104.74 | - | ||
[−90, 90] | 76.65 | 64.71 | - | 5.24 | - | ||
[−180, 180] | 86.73 | 2.64 | - | 90.00 | - | ||
≤120 | 77.71 | 64.51 | - | 55.59 | - | ||
≤200 | 103.80 | 95.67 | - | 54.13 | - | ||
≤20 | 4.67 | 4.98 | 6.22% | 4.51 | 3.55% | ||
- | 9.82 | 9.06 | 8.39% | 11.06 | 11.21% | ||
F | - | 14.49 | 14.04 | 3.21% | 15.57 | 6.94% | |
Case 2 | [1500, 2800] | 1871.38 | 1652.65 | - | 1653.14 | - | |
[−200, 1800] | 1102.91 | 1246.74 | - | 1214.89 | - | ||
[800, 1880] | 1394.95 | 1521.54 | - | 1619.18 | - | ||
[−180, 180] | 22.37 | −77.82 | - | 67.21 | - | ||
[−90, 90] | 72.61 | 25.74 | - | 45.72 | - | ||
[−180, 180] | 17.02 | −72.95 | - | 59.02 | - | ||
≤120 | 95.97 | 96.94 | - | 81.29 | - | ||
≤200 | 136.82 | 138.06 | - | 115.61 | - | ||
≤20 | 4.21 | 4.37 | 3.66% | 5.45 | 22.75% | ||
- | 11.37 | 11.42 | 0.44% | 10.84 | 4.89% | ||
F | - | 15.58 | 15.79 | 1.33% | 16.29 | 4.36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Tao, L.; Pei, Y.; Cheng, Q.; Chu, H.; Zhang, T. Collision-Free Trajectory Planning Optimization Algorithms for Two-Arm Cascade Combination System. Mathematics 2024, 12, 2245. https://doi.org/10.3390/math12142245
Xu J, Tao L, Pei Y, Cheng Q, Chu H, Zhang T. Collision-Free Trajectory Planning Optimization Algorithms for Two-Arm Cascade Combination System. Mathematics. 2024; 12(14):2245. https://doi.org/10.3390/math12142245
Chicago/Turabian StyleXu, Jingjing, Long Tao, Yanhu Pei, Qiang Cheng, Hongyan Chu, and Tao Zhang. 2024. "Collision-Free Trajectory Planning Optimization Algorithms for Two-Arm Cascade Combination System" Mathematics 12, no. 14: 2245. https://doi.org/10.3390/math12142245
APA StyleXu, J., Tao, L., Pei, Y., Cheng, Q., Chu, H., & Zhang, T. (2024). Collision-Free Trajectory Planning Optimization Algorithms for Two-Arm Cascade Combination System. Mathematics, 12(14), 2245. https://doi.org/10.3390/math12142245