Factorial Series Representation of Stieltjes Series Converging Factors
Abstract
:1. Prelude
2. Introduction
- (i)
- the converging factor of a typical Stieltjes series satisfies a first-order finite difference equation.
- (ii)
- there is a tight connection between inverse factorial series and recurrence relationships, the former being the natural mathematical tools for representing the solution of linear finite difference equations, similarly as solutions of differential equations are naturally expressed in terms of power series. A detailed discussion of the most important features of factorial series plus additional references can be found, for instance, in [50] and a more condensed one in ([13] Appendix B).
3. Converging Factors of Stieltjes Series
4. Inverse Factorial Series and Weniger Transformation
- Multiply both sides of Equation (16) by , which gives
- The left side of Equation (17) is an Nth-order polynomial with respect to the variable n. This, in turn, implies that it can be annihilated by applying times the first forward difference operator with respect to n, defined asAccordingly, we have
5. On the Factorial Series Expansion of Stieltjes Series Converging Factor
6. A Few Examples of Applications
6.1. Revisiting Euler Series
6.2. Error Function
6.3. The Logarithm Function
6.4. Lerch’s Trascendental Function
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basic Properties of Factorial Series
Appendix B. Proof of Equation (32)
Appendix C. Proof of Equation (36)
References
- Hardy, G.H. Divergent Series; Clarendon Press: Oxford, UK, 1949. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge U. P.: Cambridge, UK, 2010. [Google Scholar]
- Poincaré, H. Sur les intégrales irrégulières des équations linéaires. Acta Math. 1886, 8, 295–344. [Google Scholar] [CrossRef]
- Dyson, D.J. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 1952, 85, 32–33. [Google Scholar] [CrossRef]
- Bender, C.M.; Wu, T.T. Anharmonic oscillator. Phys. Rev. 1969, 184, 1231–1260. [Google Scholar] [CrossRef]
- Bender, C.M.; Wu, T.T. Large-order behavior of perturbation theory. Phys. Rev. Lett. 1971, 27, 461–465. [Google Scholar] [CrossRef]
- Bender, C.M.; Wu, T.T. Anharmonic oscillator. II. A study in perturbation theory in large order. Phys. Rev. D 1973, 7, 1620–1636. [Google Scholar] [CrossRef]
- Fischer, J. On the role of power expansions in quantum field theory. Int. J. Mod. Phys. A 1997, 12, 3625–3663. [Google Scholar] [CrossRef]
- Suslov, I.M. Divergent perturbation series. J. Exp. Theor. Phys. (JETP) 2005, 100, 1188–1234. [Google Scholar] [CrossRef]
- Le Guillou, J.C.; Zinn-Justin, J. (Eds.) Large-Order Behaviour of Perturbation Theory; North-Holland: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Weniger, E.J. On the analyticity of Laguerre series. J. Phys. A 2008, 41, 425207-1–425207-43. [Google Scholar] [CrossRef]
- Brezinski, C.; Redivo Zaglia, M.; Weniger, E.J. Special Issue: Approximation and extrapolation of convergent and divergent sequences and series (CIRM, Luminy–France, 2009). Appl. Numer. Math. 2010, 60, 1183–1464. [Google Scholar] [CrossRef]
- Borghi, R.; Weniger, E.J. Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Appl. Numer. Math. 2015, 94, 149–178. [Google Scholar] [CrossRef]
- Borghi, R. Computational optics through sequence transformations. In Progress in Optics; Visser, T.D., Ed.; Academic Press: Amsterdam, The Netherlands, 2016; Volume 61, Chapter 1; pp. 1–70. [Google Scholar]
- Borel, E. Mémoires sur les séries divergentes. Ann. Sci. Éc. Norm. Sup. 1899, 16, 9–136. [Google Scholar] [CrossRef]
- Padé, H. Sur la représentation approachée d’une fonction par des fractions rationelles. Ann. Sci. Éc. Norm. Sup. 1892, 9, 3–93. [Google Scholar] [CrossRef]
- Costin, O. Asymptotics and Borel Summability; Chapman & Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shawyer, B.; Watson, B. Borel’s Method of Summability; Oxford U. P.: Oxford, UK, 1994. [Google Scholar]
- Sternin, B.Y.; Shatalov, V.E. Borel-Laplace Transform and Asymptotic Theory; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Baker, G.A., Jr.; Graves-Morris, P. Padé Approximants, 2nd ed.; Cambridge U. P.: Cambridge, UK, 1996. [Google Scholar]
- Brezinski, C. Accélération de la Convergence en Analyse Numérique; Springer: Berlin, Germany, 1977. [Google Scholar]
- Brezinski, C. Algorithmes d’Accélération de la Convergence—Étude Numérique; Éditions Technip: Paris, France, 1978. [Google Scholar]
- Brezinski, C.; Redivo Zaglia, M. Extrapolation Methods; North-Holland: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Sidi, A. Practical Extrapolation Methods; Cambridge U. P.: Cambridge, UK, 2003. [Google Scholar]
- Wimp, J. Sequence Transformations and Their Applications; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Weniger, E.J. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 1989, 10, 189–371. [Google Scholar] [CrossRef]
- Homeier, H.H. Analytical and numerical studies of the convergence behavior of the j transformation. J. Comput. Appl. Math. 1996, 69, 81–112. [Google Scholar] [CrossRef]
- Weniger, E.J. An introduction to the topics presented at the conference “Approximation and extrapolation of convergent and divergent sequences and series” CIRM Luminy: 28 September–2 October 2009. Appl. Numer. Math. 2010, 60, 1184–1187. [Google Scholar] [CrossRef]
- Aksenov, S.V.; Savageau, M.A.; Jentschura, U.D.; Becher, J.; Soff, G.; Mohr, P.J. Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Commun. 2003, 150, 1–20. [Google Scholar] [CrossRef]
- Bornemann, F.; Laurie, D.; Wagon, S.; Waldvogel, J. The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004. [Google Scholar]
- Gil, A.; Segura, J.; Temme, N.M. Numerical Methods for Special Functions; SIAM: Philadelphia, PA, USA, 2007. [Google Scholar]
- Caliceti, E.; Meyer-Hermann, M.; Ribeca, P.; Surzhykov, A.; Jentschura, U.D. From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep. 2007, 446, 1–96. [Google Scholar] [CrossRef]
- Temme, N.M. Numerical aspects of special functions. Acta Numer. 2007, 16, 379–478. [Google Scholar] [CrossRef]
- Gil, A.; Segura, J.; Temme, N.M. Basic methods for computing special functions. In Recent Advances in Computational and Applied Mathematics; Simos, T.E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 67–121. [Google Scholar]
- Trefethen, L.N. Approximation Theory and Approximation Practice; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Levin, D. Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. B 1973, 3, 371–388. [Google Scholar] [CrossRef]
- Weniger, E.J. Mathematical properties of a new Levin-type sequence transformation introduced by Čížek, Zamastil, and Skála. I. Algebraic theory. J. Math. Phys. 2004, 45, 1209–1246. [Google Scholar] [CrossRef]
- Wynn, P. On a device for computing the em(Sn) transformation. Math. Tables Aids Comput. 1956, 10, 91–96. [Google Scholar] [CrossRef]
- Chang, X.K.; He, Y.; Hu, X.B.; Sun, J.Q.; Weniger, E.J. New generalizations of Wynn’s epsilon and rho algorithm by solving finite difference equations in the transformation order. Numer. Algor. 2020, 83, 593–627. [Google Scholar] [CrossRef]
- Airey, J.R. The “converging factor” in asymptotic series and the calculation of Bessel, Laguerre and other functions. Philos. Mag. 1937, 24, 521–552. [Google Scholar] [CrossRef]
- Moore, C.N. On the introduction of convergence factors into summable series and summable integrals. Trans. Am. Math. Soc. 1907, 8, 299–330. [Google Scholar] [CrossRef]
- Moore, C.N. Summable Series and Convergence Factors; American Mathematical Society: Providence, RI, USA, 2008. [Google Scholar]
- Dingle, R.B. Asymptotic expansions and converging factors I. General theory and basic converging factors. Proc. Royal Soc. Lond. A 1958, 244, 456–475. [Google Scholar]
- Dingle, R.B. Asymptotic expansions and converging factors II. Error, Dawson, Fresnel, exponential, sine and cosine, and similar integrals. Proc. Royal Soc. Lond. A 1958, 244, 476–483. [Google Scholar]
- Dingle, R.B. Asymptotic expansions and converging factors III. Gamma, psi and polygamma functions, and Fermi-Dirac and Bose-Einstein integrals. Proc. Royal Soc. Lond. A 1958, 244, 484–490. [Google Scholar]
- Dingle, R.B. Asymptotic expansions and converging factors IV. Confluent hypergeometric, parabolic cylinder, modified Bessel, and ordinary Bessel functions. Proc. Royal Soc. Lond. A 1959, 249, 270–283. [Google Scholar]
- Dingle, R.B. Asymptotic expansions and converging factors V. Lommel, Struve, modified Struve, Anger and Weber functions, and integrals of ordinary and modified Bessel functions. Proc. Royal Soc. Lond. A 1959, 249, 284–292. [Google Scholar]
- Dingle, R.B. Asymptotic expansions and converging factors. VI. Application to physical prediction. Proc. Royal Soc. Lond. A 1959, 249, 293–295. [Google Scholar]
- Dingle, R.B. Asymptotic Expansions: Their Derivation and Interpretation; Academic Press: London, UK, 1973. [Google Scholar]
- Weniger, E.J. Summation of divergent power series by means of factorial series. Appl. Numer. Math. 2010, 60, 1429–1441. [Google Scholar] [CrossRef]
- Borghi, R. Asymptotic and factorial expansions of Euler series truncation errors via exponential polynomials. Appl. Numer. Math. 2010, 60, 1242–1250. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions; National Bureau of Standards: Washington, DC, USA, 1972. [Google Scholar]
- Weniger, E.J. Asymptotic approximations to truncation errors of series representations for special functions. In Algorithms for Approximation; Iske, A., Levesley, J., Eds.; Springer: Berlin, Germany, 2007; pp. 331–348. [Google Scholar]
- Nielsen, N. Die Gammafunktion; Chelsea: New York, NY, USA, 1965. [Google Scholar]
- Milne-Thomson, L.M. The Calculus of Finite Differences; Chelsea: New York, NY, USA, 1981. [Google Scholar]
- Paris, R.B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals; Cambridge U.P.: Cambridge, UK, 2001. [Google Scholar]
- Stirling, J. Methodus Differentialis sive Tractatus de Summatione et Interpolatione Serierum Infinitarum; Strahan: London, UK, 1730. [Google Scholar]
- Nörlund, N.E. Vorlesungen über Differenzenrechnung; Chelsea: New York, NY, USA, 1954. [Google Scholar]
- Tweedie, C. Nicole’s contributions to the foundations of the calculus of finite differences. Proc. Edinb. Math. Soc. 1917, 36, 22–39. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Daalhuis, A.B.O.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions; Release 1.0.26 of 15 March 2020. Available online: http://dlmf.nist.gov/ (accessed on 1 June 2024).
- Weniger, E.J. Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Comput. Phys. 1996, 10, 496–503. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Mohr, P.J.; Soff, G.; Weniger, E.J. Convergence acceleration via combined nonlinear-condensation transformations. Comput. Phys. Commun. 1999, 116, 28–54. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Mohr, P.J.; Soff, G. Calculation of the electron self-energy for low nuclear charge. Phys. Rev. Lett. 1999, 82, 53–56. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Becher, J.; Weniger, E.J.; Soff, G. Resummation of QED perturbation series by sequence transformations and the prediction of perturbative coefficients. Phys. Rev. Lett. 2000, 85, 2446–2449. [Google Scholar] [CrossRef] [PubMed]
- Borghi, R.; Santarsiero, M. Summing Lax series for nonparaxial beam propagation. Opt. Lett. 2003, 28, 774–776. [Google Scholar] [CrossRef] [PubMed]
- Grecchi, V.; Maioli, M.; Martinez, A. Padé summability of the cubic oscillator. J. Phys. A 2009, 42, 425208-1–425208-17. [Google Scholar] [CrossRef]
- Grecchi, V.; Martinez, A. The spectrum of the cubic oscillator. Commun. Math. Phys. 2013, 319, 479–500. [Google Scholar] [CrossRef]
- Bender, C.M.; Weniger, E.J. Numerical evidence that the perturbation expansion for a non-Hermitian -symmetric Hamiltonian is Stieltjes. J. Math. Phys. 2001, 42, 2167–2183. [Google Scholar] [CrossRef]
- Colwell, P. Solving Kepler’s Equation Over Three Centuries; Willmann-Bell: Richmond, VA, USA, 1993. [Google Scholar]
- Borghi, R. On the Bessel Solution of Kepler’s Equation. Mathematics 2024, 12, 154. [Google Scholar] [CrossRef]
- Weniger, E.J. A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic, and octic anharmonic oscillator. Ann. Phys. 1996, 246, 133–165. [Google Scholar] [CrossRef]
- Weniger, E.J. Construction of the strong coupling expansion for the ground state energy of the quartic, sextic and octic anharmonic oscillator via a renormalized strong coupling expansion. Phys. Rev. Lett. 1996, 77, 2859–2862. [Google Scholar] [CrossRef] [PubMed]
- Weniger, E.J.; Čížek, J.; Vinette, F. Very accurate summation for the infinite coupling limit of the perturbation series expansions of anharmonic oscillators. Phys. Lett. A 1991, 156, 169–174. [Google Scholar] [CrossRef]
- Weniger, E.J.; Čížek, J.; Vinette, F. The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations. J. Math. Phys. 1993, 34, 571–609. [Google Scholar] [CrossRef]
- Graffi, S.; Grecchi, V. Borel summability and indeterminacy of the Stieltjes moment problem: Application to the anharmonic oscillators. J. Math. Phys. 1978, 19, 1002–1006. [Google Scholar] [CrossRef]
- Stirling, J. The Differential Method, or, a Treatise Concerning the Summation and Interpolation of Infinite Series; Strahan: London, UK, 1749. [Google Scholar]
- Meschkowski, H. Differenzengleichungen; Vandenhoek & Rupprecht: Göttingen, Germany, 1959. [Google Scholar]
- Nörlund, N.E. Leçons sur les Séries d’Interpolation; Gautier-Villars: Paris, France, 1926. [Google Scholar]
- Nörlund, N.E. Leçons sur les Équations Linéaires aux Différences Finies; Gautier-Villars: Paris, France, 1929. [Google Scholar]
- Knopp, K. Theorie und Anwendung der Unendlichen Reihen, 5th ed.; Springer: Berlin, Germany, 1964. [Google Scholar]
- Nielsen, N. Lehrbuch der Unendlichen Reihen; Teubner: Leipzig/Berlin, Germany, 1909. [Google Scholar]
- Landau, E. Über die Grundlagen der Theorie der Fakultätenreihen. Sitzungsb. Königl. Bay. Akad. Wissensch. München Math.-Phys. Kl. 1906, 36, 151–218. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghi, R. Factorial Series Representation of Stieltjes Series Converging Factors. Mathematics 2024, 12, 2330. https://doi.org/10.3390/math12152330
Borghi R. Factorial Series Representation of Stieltjes Series Converging Factors. Mathematics. 2024; 12(15):2330. https://doi.org/10.3390/math12152330
Chicago/Turabian StyleBorghi, Riccardo. 2024. "Factorial Series Representation of Stieltjes Series Converging Factors" Mathematics 12, no. 15: 2330. https://doi.org/10.3390/math12152330
APA StyleBorghi, R. (2024). Factorial Series Representation of Stieltjes Series Converging Factors. Mathematics, 12(15), 2330. https://doi.org/10.3390/math12152330