Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space
Abstract
:1. Introduction
1.1. Symmetric Affine Connection Space in Eisenhart’s Sense
1.2. Riemannian Space in Eisenhart’s Sense
1.3. Almost Geodesic Mappings
1.4. Invariants for Geometric Mappings
- 1.
- If the transformation f preserves value of the object but changes its form to , then the invariance for geometrical object under transformation f is valued.
- 2.
- If the transformation f preserves both the value and the form of geometrical object , then the invariance for geometrical object under the transformation f is total.
1.5. Motivation
- To review results about invariants for mappings of symmetric affine connection spaces obtained in [18].
- To obtain the corresponding invariants for second type almost geodesic mappings of Riemannian space .
2. Review of Basic and Derived Invariants
3. Invariants for Second Type Almost Geodesic Mappings of Space
Invariants for -Mappings of Space
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1949. [Google Scholar]
- Eisenhart, L.P. Non-Riemannian Geometry; American Mathematical Society: New York, NY, USA, 1927. [Google Scholar]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M. Differential Geometry of Special Mappings, 2nd ed.; Palacký University Press: Olomouc, Czech Republic, 2019. [Google Scholar]
- Mikeš, O.J.; Pokorna, O.; Starko, P.G. On Almost Geodesic Mappings π2(e) onto Riemannian Spaces. Rend. Circ. Mat. Palermo 2004, 72, 151–157. [Google Scholar]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Berezovski, V.; Cherevko, Y.; Hinterleitner, I.; Peška, P. Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces. Mathematics 2020, 8, 1560. [Google Scholar] [CrossRef]
- Berezovskii, V.; Guseva, N.I.; Mikeš, J. Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces. Math. Notes 2021, 110, 293–296. [Google Scholar] [CrossRef]
- Berezovski, V.; Cherevko, I.; Hinterleitner, I.; Mikeš, J. Canonical Almost Geodesic Mappings of the First Type onto Generalized Ricci Symmetric Spaces. Filomat 2022, 36, 1089–1097. [Google Scholar] [CrossRef]
- Sinyukov, N.S. Almost geodesic mapping of affine-connected and Riemannian spaces. Itogi Nauk. Tekhniki. Seriya Probl. Geom. Tr. Geom. Semin. 1982, 13, 3–26. [Google Scholar]
- Berezovski, V.; Mikeš, J. On a Classification of Almost Geodesic Mappings of Affine Connection Spaces. Acta Univ. Palacki. Olomuc. Fac. Rerum Nat. Math. 1996, 35, 21–24. [Google Scholar]
- Berezovski, V.; Mikeš, J. Almost Geodesic Mappings of Spaces with Affine Connection. J. Math. Sci. 2015, 207, 389–409. [Google Scholar] [CrossRef]
- Berezovski, V.; Basco, S.; Cherevko, Y.; Mikeš, J. Canonical Almost Geodesic Mappings π2(e), e = ±1, of Spaces with Affine Connection onto m-Symmetric Spaces. Miskolc Math. Notes 2023, 24, 93–104. [Google Scholar] [CrossRef]
- Ryparova, L.; Mikeš, J.; Peška, P. Almost Geodesic Curves and Geodesic Mappings. J. Soviet Math. 2023, 221, 93–103. (In Russian) [Google Scholar] [CrossRef]
- Mikeš, J.; Berezovski, V.E.; Stepanova, E.; Chudá, H. Geodesic Mappings and Their Generalizations. J. Math. Sci. 2016, 217, 607–623. [Google Scholar] [CrossRef]
- Mikeš, J.; Stepanova, E.; Vanžurova, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M. Differential Geometry of Special Mappings; Palacky University: Olomouc, Czech Republic, 2015. [Google Scholar]
- Mikeš, J.; Vanžurová, A.; Hinterleitner, I. Geodesic Mappings and Some Generalizations; Palacky University: Olomouc, Czechia, 2009. [Google Scholar]
- Vesić, N.O. Basic invariants of geometric mappings. Miskolc Math. Notes 2020, 21, 473–487. [Google Scholar] [CrossRef]
- Vesić, N.O.; Milenković, V.M.; Stanković, M.S. Two Invariants for Geometric Mappings. Axioms 2020, 11, 239. [Google Scholar] [CrossRef]
- Simjanović, D.J. Tensor Calculus at Symmetric and Non-Symmetric Affine Connection Spaces with Application in the Fields of Linear Programming and Design of Fuzzy Controllers. Ph.D. Thesis, Faculty of Electronic Engineering, Niš, Serbia, 2024. [Google Scholar]
- Simjanović, D.J.; Vesić, N.O. Novel invariants for almost geodesic mappings of the third type. Miskolc Math. Notes 2021, 22, 961–975. [Google Scholar] [CrossRef]
- Peška, P.; Jukl, M.; Mikeš, J. Tensor Decompositions and Their Properties. Mathematics 2023, 11, 3638. [Google Scholar] [CrossRef]
- Pistruil, M.I.; Kurbatova, I.N. On quasi-geodesic mappings of specialpseudo-Riemannian spaces. Proc. Int. Geom. Center 2022, 15, 121–139. [Google Scholar]
- Rovenski, V.; Mikeš, J.; Stepanov, S. The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations. Mathematics 2021, 9, 1379. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology; Fermi National Accelerator Laboratory, University of Chicago: Chicago, IL, USA, 2003. [Google Scholar]
- Blau, M. Lecture Notes on General Relativity; Albert Einstein Center for Fundamental Physics, Universität Bern: Bern, Switzerland, 2015. [Google Scholar]
- Bach, R. Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 1921, 9, 110–135. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Method of Information Geometry. In AMS Monograph; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Nielsen, F. An Elementary Introduction to Information Geometry. Entropy 2020, 22, 1100. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesić, N.O.; Simjanović, D.J.; Randjelović, B.M. Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space. Mathematics 2024, 12, 2329. https://doi.org/10.3390/math12152329
Vesić NO, Simjanović DJ, Randjelović BM. Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space. Mathematics. 2024; 12(15):2329. https://doi.org/10.3390/math12152329
Chicago/Turabian StyleVesić, Nenad O., Dušan J. Simjanović, and Branislav M. Randjelović. 2024. "Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space" Mathematics 12, no. 15: 2329. https://doi.org/10.3390/math12152329
APA StyleVesić, N. O., Simjanović, D. J., & Randjelović, B. M. (2024). Invariants for Second Type Almost Geodesic Mappings of Symmetric Affine Connection Space. Mathematics, 12(15), 2329. https://doi.org/10.3390/math12152329