An Interpretable Breast Ultrasound Image Classification Algorithm Based on Convolutional Neural Network and Transformer
Abstract
:1. Introduction
- We propose an interpreted ensemble model for breast ultrasound image classification. During the training phase, the tumor boundaries mask is employed as prior knowledge to assist the model in identifying the region of interest.
- We integrate a CNN-based model and a multi-scale Transformer model to optimize the predictions and improve the average accuracy of the model.
- Moreover, we visualize the confidence increase map according to the prediction results to improve the interpretability of the model.
- Finally, we evaluate the model on the BUSI dataset and compare it with CNN and Transformer models. Experimental results show that the proposed model achieves state-of-the-art performance with 0.9870 in accuracy and 0.9872 in F1 score.
2. Related Work
2.1. Computer-Aided Diagnosis of Breast Cancer
2.2. Transformer of Computer Version
2.3. Attribution Methods in Deep Learning
3. Method
3.1. Improved Swin-Transformer
3.1.1. Patches Partition
3.1.2. Multi-Scale Feature Extraction
3.2. Interpretation Method
3.3. Loss Function
4. Experiments
4.1. Dataset
4.2. Data Preprocessing and Data Enhancement
4.3. Implement Details
4.4. Evaluation Metrics
5. Results
5.1. Ablation Experiments
5.2. Compare with Other Methods
5.3. Visualization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Computer-aided diagnosis |
CNN | Convolutional neural network |
ViT | Vision Transformer |
CAM | Class activation mapping |
Grad-CAM | Gradient weighted class activation mapping |
NLP | Natural language processing |
W-MSA | Window multi-head self attention |
SW-MSA | Shifted window multi-head self attention |
MLP | Multiple layer perception |
AUC | Area Under Curve |
References
- Giaquinto, A.N.; Miller, K.D.; Tossas, K.Y.; Winn, R.A.; Jemal, A.; Siegel, R.L. Cancer statistics for African American/Black People 2022. CA A Cancer J. Clin. 2022, 72, 202–229. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Kubota, K.; Mori, M.; Kikuchi, Y.; Katsuta, L.; Kimura, M.; Yamaga, E.; Adachi, M.; Oda, G.; Nakagawa, T.; et al. Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging. Diagnostics 2020, 10, 456. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Xu, M.; Yu, J.; Qin, C.; Luo, X.; Yang, X.; Wang, T.; Li, A.; Ni, D. Deeply-Supervised Networks With Threshold Loss for Cancer Detection in Automated Breast Ultrasound. IEEE Trans. Med. Imaging 2020, 39, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Choi, E.J.; Choi, Y.; Zhang, H.; Jin, G.Y.; Ko, S.B. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning. Ultrasound Med. Biol. 2020, 46, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.H.; Pons, G.; Martí, J.; Ganau, S.; Sentís, M.; Zwiggelaar, R.; Davison, A.K.; Martí, R. Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE J. Biomed. Health Inf. 2018, 22, 1218–1226. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Zhong, S.; Feng, Q.; Ning, Z.; Zhang, Y. Breast Ultrasound Image Segmentation: A Coarse-to-Fine Fusion Convolutional Neural Network. Med. Phys. 2021, 48, 4262–4278. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Wu, J.; Luo, T.; Zeng, J.; Gou, F. Continuous Refinement-based Digital Pathology Image Assistance Scheme in Medical Decision-Making Systems. IEEE J. Biomed. Health Inf. 2024, 28, 2091–2102. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv 2013, arXiv:1312.6034. [Google Scholar]
- Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2019, 128, 336–359. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Tang, J.; Wang, Z.; Zhang, K.; Zhang, L.; Sun, Q. Deep learning for image-based cancer detection and diagnosis—A survey. Pattern Recognit. 2018, 83, 134–149. [Google Scholar] [CrossRef]
- Huang, Z.; Ling, Z.; Gou, F.; Wu, J. Medical Assisted-segmentation System based on Global Feature and Stepwise Feature Integration for Feature Loss Problem. Biomed. Signal Process. Control 2024, 89, 105814. [Google Scholar] [CrossRef]
- Zhou, Z.; Xie, P.; Dai, Z.; Wu, J. Self-supervised Tumor Segmentation and Prognosis Prediction in Osteosarcoma Using Multiparametric MRI and Clinical Characteristics. Comput. Methods Programs Biomed. 2024, 244, 107974. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, Y.; Luo, Y.; Yuan, F.; Li, X. Segmentation of breast ultrasound image with semantic classification of superpixels. Med. Image Anal. 2020, 61, 101657. [Google Scholar] [CrossRef] [PubMed]
- Vakanski, A.; Xian, M.; Freer, P.E. Attention Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound Images. Ultrasound Med. Biol. 2020, 46, 2819–2833. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, G.; Chen, Q.; Chen, X.; Lv, F. Breast tumor classification through learning from noisy labeled ultrasound images. Med. Phys. 2019, 47, 1048–1057. [Google Scholar] [CrossRef]
- Huang, Y.; Han, L.; Dou, H.; Luo, H.; Yuan, Z.; Liu, Q.; Zhang, J.; Yin, G. Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images. BioMed. Eng. OnLine 2019, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.; Sewissy, A.A.; Soliman, T.H.A. Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 316–332. [Google Scholar] [CrossRef]
- Chopra, J.; Kumar, A.; Aggarwal, A.K.; Marwaha, A. Biometric System Security Issues and Challenges. Second Int. Conf. Innov. Trends Electron. Eng. 2016, 20, 83–87. [Google Scholar]
- Yap, M.H.; Goyal, M.; Osman, F.; Ahmad, E.; Martí, R.; Denton, E.R.E.; Juette, A.; Zwiggelaar, R. End-to-end breast ultrasound lesions recognition with a deep learning approach. In Proceedings of the Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, Houston, TX, USA, 11–13 February 2018. [Google Scholar]
- Shin, S.Y.; Lee, S.; Yun, I.D.; Kim, S.M.; Lee, K.M. Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Trans. Med. Imaging 2019, 38, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Zhu, Y.; Wang, C. A Method for Localization and Classification of Breast Ultrasound Tumors. Adv. Swarm Intell. 2020, 12145, 564–574. [Google Scholar]
- Wu, J.; Dai, T.; Guan, P.; Liu, S.; Gou, F.; Taherkordi, A.; Li, Y.; Li, T. FedAPT: Joint Adaptive Parameter Freezing and Resource Allocation for Communication-Efficient. IEEE Internet Things J. 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Tanaka, H.; Chiu, S.W.; Watanabe, T.; Kaoku, S.; Yamaguchi, T. Computer-aided diagnosis system for breast ultrasound images using deep learning. Ultrasound Med. Biol. 2019, 64, 235013. [Google Scholar]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, K.; Zhu, X.; Gou, F.; Wu, J. A pathology image segmentation framework based on deblurring and region proxy in medical decision-making system. Biomed. Signal Process. Control 2024, 95, 106439. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, T.; Zeng, J.; Gou, F. A Medically Assisted Model for Precise Segmentation of Osteosarcoma Nuclei on Pathological Images. IEEE J. Biomed. Health Inf. 2024, 27, 3982–3993. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Tay, F.E.H.; Feng, J.; Yan, S. Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 538–547. [Google Scholar]
- Jaeger, P.F.; Kohl, S.A.A.; Bickelhaupt, S.; Isensee, F.; Kuder, T.; Schlemmer, H.; Maier-Hein, K. Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection. arXiv 2019, arXiv:1811.08661. [Google Scholar]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Aggarwal, A.K. A Review on Genomics Data Analysis using Machine Learning. Wseas Trans. Biol. Biomed. 2023, 20, 119–131. [Google Scholar] [CrossRef]
- Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M.A. Striving for Simplicity: The All Convolutional Net. arXiv 2015, arXiv:1412.6806. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Samek, W.; Binder, A.; Montavon, G.; Lapuschkin, S.; Müller, K.R. Evaluating the Visualization of What a Deep Neural Network Has Learned. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2660–2673. [Google Scholar] [CrossRef]
- Moon, W.K.; Lee, Y.W.; Ke, H.H.; Lee, S.H.; Huang, C.S.; Chang, R.F. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput. Methods Programs Biomed. 2020, 190, 105361. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Bhattacharjee, D.; Kollmann, C. BUS-Net: A Fusion-based Lesion Segmentation Model for Breast Ultrasound (BUS) Images. Lect. Notes Netw. Syst. 2023, 404, 313–321. [Google Scholar]
- Wang, W.; Jiang, R.; Cui, N.; Li, Q.; Yuan, F.; Xiao, Z. Semi-supervised vision transformer with adaptive token sampling for breast cancer classification. Front. Pharmacol. 2022, 13, 929755. [Google Scholar] [CrossRef]
- Lazo, J.F.; Moccia, S.; Frontoni, E.; De Momi, E. Comparison of different CNNs for breast tumor classification from ultrasound images. arXiv 2013, arXiv:2012.1451. [Google Scholar]
- Zhang, G.; Zhao, K.; Hong, Y.; Qiu, X.; Zhang, K.; Wei, B. SHA-MTL: Soft and hard attention multi-task learning for automated breast cancer ultrasound image segmentation and classification. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yu, X.; Ma, N.; Zhang, Y.; Li, H. Deep representation-based transfer learning for deep neural networks. Knowl.-Based Syst. 2022, 253, 109526. [Google Scholar] [CrossRef]
- Podda, A.S.; Balia, R.; Barra, S.; Carta, S.M.; Fenu, G.; Piano, L.C. Fully-Automated Deep Learning Pipeline for Segmentation and Classification of Breast Ultrasound Images. J. Comput. Sci. 2022, 63, 101816. [Google Scholar] [CrossRef]
Data State | Classes | Train | Validation | Test |
---|---|---|---|---|
Bengin | 351 | 168 | 107 | |
Raw | Malignant | 43 | 21 | 13 |
Normal | 43 | 21 | 13 | |
Bengin | 500 | 500 | 500 | |
Augmentated | Malignant | 100 | 100 | 100 |
Normal | 43 | 21 | 13 |
Method | Class | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|---|
VGG16 | Bengin | 0.9302 | 0.9070 | 0.8966 | 0.9017 | 0.9316 |
Malignant | 0.7619 | 0.8372 | 0.8571 | 0.8471 | 0.9447 | |
Normal | 0.9231 | 0.8462 | 0.8462 | 0.8462 | 0.9675 | |
Average | 0.8803 | 0.8808 | 0.8803 | 0.8805 | 0.9411 | |
VGG16 + | Bengin | 0.9767 | 0.9546 | 0.9767 | 0.9655 | 0.9891 |
Malignant | 1.0000 | 1.0000 | 1.0000 | 0.9756 | 0.9966 | |
Normal | 0.9231 | 0.9231 | 0.8462 | 0.9231 | 0.9964 | |
Average | 0.9610 | 0.9616 | 0.9610 | 0.9611 | 0.9937 | |
Swin-T + | Bengin | 1.0000 | 0.9555 | 1.0000 | 0.9773 | 0.9932 |
Malignant | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Normal | 0.8462 | 1.0000 | 0.8462 | 0.9167 | 0.9964 | |
Average | 0.9740 | 0.9783 | 0.9765 | 0.9923 | 0.9978 | |
Ensemble * | Bengin | 0.9767 | 1.0000 | 0.9535 | 0.9762 | 0.9850 |
Malignant | 1.0000 | 0.9546 | 1.0000 | 0.9767 | 0.9940 | |
Normal | 0.9231 | 0.9286 | 1.0000 | 0.9630 | 0.9964 | |
Average | 0.9740 | 0.9755 | 0.9740 | 0.9741 | 0.9892 | |
Ours | Bengin | 0.9767 | 0.9773 | 1.0000 | 0.9760 | 0.9973 |
Malignant | 1.0000 | 1.0000 | 1.0000 | 0.9950 | 1.0000 | |
Normal | 1.0000 | 1.0000 | 0.9880 | 0.9990 | 0.9976 | |
Average | 0.9870 | 0.9880 | 0.9870 | 0.9872 | 0.9982 |
Model Type | Model | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|---|
CNN | VGG16 | 0.9610 | 0.9616 | 0.9610 | 0.9611 | 0.9937 |
ResNet50 | 0.9481 | 0.9525 | 0.9481 | 0.9475 | 0.9844 | |
ResNet101 | 0.9495 | 0.9429 | 0.9523 | 0.9476 | 0.9862 | |
[38] | 0.9162 | 0.9318 | 0.9148 | 0.9666 | 0.9678 | |
[41] | 0.9280 | - | - | - | 0.9869 | |
[42] | 0.9412 | 0.9613 | 0.8993 | 92.93 | - | |
[43] | 0.9000 | - | - | 0.9000 | - | |
[44] | 0.8996 | 0.8933 | 0.9997 | - | - | |
[39] | 0.9319 | 0.9318 | 0.8875 | - | - | |
Transformer | ViT | 0.9345 | 0.9350 | 0.9345 | 0.9243 | 0.9960 |
Swin-T | 0.9740 | 0.9783 | 0.9765 | 0.9923 | 0.9978 | |
[40] | 0.9529 | 0.9629 | 0.9601 | 0.9615 | - | |
[5] | 0.8670 | - | - | - | 0.9500 | |
CNN + Transformer | Ours | 0.9870 | 0.9880 | 0.9870 | 0.9872 | 0.9982 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Ma, J.; Liu, F.; Chen, Z.; Zhang, T. An Interpretable Breast Ultrasound Image Classification Algorithm Based on Convolutional Neural Network and Transformer. Mathematics 2024, 12, 2354. https://doi.org/10.3390/math12152354
Meng X, Ma J, Liu F, Chen Z, Zhang T. An Interpretable Breast Ultrasound Image Classification Algorithm Based on Convolutional Neural Network and Transformer. Mathematics. 2024; 12(15):2354. https://doi.org/10.3390/math12152354
Chicago/Turabian StyleMeng, Xiangjia, Jun Ma, Feng Liu, Zhihua Chen, and Tingting Zhang. 2024. "An Interpretable Breast Ultrasound Image Classification Algorithm Based on Convolutional Neural Network and Transformer" Mathematics 12, no. 15: 2354. https://doi.org/10.3390/math12152354
APA StyleMeng, X., Ma, J., Liu, F., Chen, Z., & Zhang, T. (2024). An Interpretable Breast Ultrasound Image Classification Algorithm Based on Convolutional Neural Network and Transformer. Mathematics, 12(15), 2354. https://doi.org/10.3390/math12152354