The Period Function of the Generalized Sine-Gordon Equation and the Sinh-Poisson Equation
Abstract
:1. Introduction
2. Criteria for the Monotonicity of the Period Function
- (1)
- If there exist a zero-measure set , such that for all for , then for
- (2)
- If there exist a zero-measure set , such that for all for , then for
3. The Monotonicity of the Period Function for the Generalized sG Equation in the Case of
4. The Monotonicity of the Period Function for the Generalized sG Equation in the Case of
- (1)
- If or in the case that the corresponding period function satisfies for .
- (2)
- If then for .
- (3)
- If then for .
5. The Monotonicity of the Period Function for the sP Equation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastianello, A. Sine-Gordon model from coupled condensates: A generalized hydrodynamics viewpoint. Phys. Rev. B 2024, 109, 35118. [Google Scholar] [CrossRef]
- De Santis, D.; Guarcello, C.; Spagnolo, B.; Carollo, A.; Valenti, D. Breather dynamics in a stochastic sine-Gordon equation: Evidence of noise-enhanced stability. Chaos Soliton. Fract. 2023, 168, 113115. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Zabihi, A.; Davodi, A.G.; Ansari, R.; Ahmad, H.; Yao, S.W. New optical solitons of double sine-Gordon equation using exact solutions methods. Results Phys. 2023, 49, 106452. [Google Scholar] [CrossRef]
- Guo, J.; Li, M. The dynamics of some exact solutions to a (3+1)-dimensional sine-Gordon equation. Wave Motion. 2024, 130, 103354. [Google Scholar] [CrossRef]
- Dauxois, T.; Fauve, S.; Tuckerman, L. Stability of periodic arrays of vortices. Phys. Fluids. 1996, 8, 487–495. [Google Scholar] [CrossRef]
- Zaslavsky, G.M.; Sagdeev, R.Z.; Usikov, D.A. Weak Chaos and Quasi-Regular Patterns; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Fokas, A.S. On a class of physically important integrable equations. Phys. D 1995, 87, 145–150. [Google Scholar] [CrossRef]
- Ling, L.; Sun, X. On the elliptic-localized solutions of the sine-Gordon equation. Phys. D. 2023, 444, 133597. [Google Scholar] [CrossRef]
- Lenells, J.; Fokas, A.S. On a novel integrable generalization of the sine-Gordon equation. J. Math. Phys. 2010, 51, 23519. [Google Scholar] [CrossRef]
- Matsuno, Y. A direct method for solving the generalized sine-Gordon equation. J. Phys. A-Math. Theor. 2010, 43, 105204. [Google Scholar] [CrossRef]
- Matsuno, Y. A direct method for solving the generalized sine-Gordon equation II. J. Phys. A-Math. Theor. 2010, 43, 375201. [Google Scholar] [CrossRef]
- Gatlik, J.; Dobrowolski, T.; Kevrekidis, P.G. Kink-inhomogeneity interaction in the sine-Gordon model. Phys. Rev. E 2023, 108, 34203. [Google Scholar] [CrossRef] [PubMed]
- Carretero-González, R.; Cisneros-Ake, L.A.; Decker, R.; Koutsokostas, G.N.; Frantzeskakis, D.J.; Kevrekidis, P.G.; Ratliff, D.J. Kink-antikink stripe interactions in the two-dimensional sine-Gordon equation. Commun. Nonlinear Sci. 2022, 109, 106123. [Google Scholar] [CrossRef]
- Feng, B.F.; Sheng, H.H.; Yu, G.F. Integrable semi-discretizations and self-adaptive moving mesh method for a generalized sine-Gordon equation. Numer. Algorithms 2023, 94, 351–370. [Google Scholar] [CrossRef]
- Sheng, H.H.; Feng, B.F.; Yu, G.F. A generalized sine-Gordon equation: Reductions and integrable discretizations. J. Nonlinear Sci. 2024, 34, 55. [Google Scholar] [CrossRef]
- Xiang, X.; Zhao, S.; Shi, Y. Solutions and continuum limits to nonlocal discrete sine-Gordon equations: Bilinearization reduction method. Stud. Appl. Math. 2023, 150, 1274–1303. [Google Scholar] [CrossRef]
- Lührmann, J.; Schlag, W. Asymptotic stability of the sine-Gordon kink under odd perturbations. Duke Math. J. 2023, 172, 2715–2820. [Google Scholar] [CrossRef]
- Montgomery, D.; Matthaeus, W.H.; Stribling, W.T.; Martinez, D.; Oughton, S. Relaxation in two dimensions and the “sinh-Poisson" equation. Phys. Fluids A Fluid Dyn. 1992, 4, 3–6. [Google Scholar] [CrossRef]
- Ting, A.C.; Chen, H.H.; Lee, Y.C. Exact solutions of a nonlinear boundary value problem: The vortices of the two-dimensional sinh-Poisson equation. Phys. D 1987, 26, 37–66. [Google Scholar] [CrossRef]
- Gurarie, D.; Chow, K.W. Vortex arrays for sinh-Poisson equation of two-dimensional fluids: Equilibria and stability. Phys. Fluids 2004, 16, 3296–3305. [Google Scholar] [CrossRef]
- Bartsch, T.; Pistoia, A.; Weth, T. N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations. Commun. Math. Phys. 2010, 297, 653–686. [Google Scholar] [CrossRef]
- Grossi, M.; Pistoia, A. Multiple blow-up phenomena for the sinh-Poisson equation. Arch. Ration. Mech. Anal. 2013, 209, 287–320. [Google Scholar] [CrossRef]
- McDonald, B.E. Numerical calculation of nonunique solutions of a two-dimensional sinh-Poisson equation. J. Comput. Phys. 1974, 16, 360–370. [Google Scholar] [CrossRef]
- DelaTorre, A.; Mancini, G.; Pistoia, A. Sign-changing solutions for the one-dimensional non-local sinh-Poisson equation. Adv. Nonlinear Stud. 2020, 20, 739–767. [Google Scholar] [CrossRef]
- Figueroa, P. Sign-changing bubble tower solutions for sinh-Poisson type equations on pierced domains. J. Differ. Equ. 2023, 367, 494–548. [Google Scholar] [CrossRef]
- Bartolucci, D.; Pistoia, A. Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation. IMA J. Appl. Math. 2007, 72, 706–729. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Z. Bifurcation and traveling wave solutions for the Fokas equation. Int. J. Bifurcat. Chaos. 2015, 25, 1550136. [Google Scholar] [CrossRef]
- Zhang, Z.A.; Lou, S.Y. Linear superposition for a sine-Gordon equation with some types of novel nonlocalities. Phys. Scr. 2023, 98, 35211. [Google Scholar] [CrossRef]
- Novkoski, F.; Falcon, E.; Pham, C.T. A numerical direct scattering method for the periodic sine-Gordon equation. Eur. Phys. J. Plus. 2023, 138, 1146. [Google Scholar] [CrossRef]
- Chow, K.W.; Mak, C.C.; Rogers, C.; Schief, W.K. Doubly periodic and multiple pole solutions of the sinh-Poisson equation: Application of reciprocal transformations in subsonic gas dynamics. J. Comput. Appl. Math. 2006, 190, 114–126. [Google Scholar] [CrossRef]
- Chow, K.W.; Tsang, S.C.; Mak, C.C. Another exact solution for two-dimensional, inviscid sinh-Poisson vortex arrays. Phys. Fluids 2003, 15, 2437–2440. [Google Scholar] [CrossRef]
- Zhang, X.; Boyd, J.P. Exact solutions to a nonlinear partial differential equation: The product-of-curvatures Poisson (uxxuyy = 1). J. Comput. Appl. Math. 2022, 406, 113866. [Google Scholar] [CrossRef]
- Tracy, E.R.; Chin, C.H.; Chen, H.H. Real periodic solutions of the Liouville equation. Phys. D 1986, 23, 91–101. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Z. Periodic solutions for a second-order partial difference equation. J. Appl. Math. Comput. 2023, 69, 731–752. [Google Scholar] [CrossRef]
- Geyer, A.; Martins, R.H.; Natali, F.; Pelinovsky, D.E. Stability of smooth periodic travelling waves in the Camassa-Holm equation. Stud. Appl. Math. 2022, 148, 27–61. [Google Scholar] [CrossRef]
- Johnson, M.A.; Noble, P.; Rodrigues, L.M.; Zumbrun, K. Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations. Invent. Math. 2014, 197, 115–213. [Google Scholar] [CrossRef]
- Hakkaev, S.; Stanislavova, M.; Stefanov, A. Spectral stability for classical periodic waves of the Ostrovsky and short pulse models. Stud. Appl. Math. 2017, 139, 405–433. [Google Scholar] [CrossRef]
- Pava, J.A.; Bona, J.L.; Scialom, M. Stability of cnoidal waves. Adv. Differential Equ. 2006, 11, 1321–1374. [Google Scholar]
- Chen, X.; Wang, Z.; Zhang, W. Reachability of maximal number of critical periods without independence. J. Differ. Equ. 2020, 269, 9783–9803. [Google Scholar] [CrossRef]
- Li, C.; Lu, K. The period function of hyperelliptic Hamiltonian of degree 5 with real critical points. Nonlinearity 2008, 21, 465–483. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, W. Limit periodic travelling wave solution of a model for biological invasions. Appl. Math. Lett. 2014, 34, 13–16. [Google Scholar] [CrossRef]
- Chen, A.; Tian, C.; Huang, W. Periodic solutions with equal period for the Friedmann-Robertson-Walker model. Appl. Math. Lett. 2018, 77, 101–107. [Google Scholar] [CrossRef]
- Chen, A.; Guo, L.; Deng, X. Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 2016, 261, 5324–5349. [Google Scholar] [CrossRef]
- Chen, A.; Li, J.; Huang, W. The monotonicity and critical periods of periodic waves of the ϕ6 field model. Nonlinear Dynam. 2011, 63, 205–215. [Google Scholar] [CrossRef]
- Lu, L.; He, X.; Chen, A. Bifurcations analysis and monotonicity of the period function of the Lakshmanan-Porsezian-Daniel equation with Kerr Law of nonlinearity. Qual. Theor. Dyn. Syst. 2024, 23, 179. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, C.; Huang, W. Monotonicity of limit wave speed of traveling wave solutions for a perturbed generalized KdV equation. Appl. Math. Lett. 2021, 121, 107381. [Google Scholar] [CrossRef]
- Sun, X.; Yu, P. Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete Cont. Dyn.-B 2019, 24, 965–987. [Google Scholar] [CrossRef]
- Chicone, C. The monotonicity of the period function for planar Hamiltonian vector fields. J. Differ. Equ. 1987, 69, 310–321. [Google Scholar] [CrossRef]
- Sabatini, M. On the period function of Liénard systems. J. Differ. Equ. 1999, 152, 467–487. [Google Scholar] [CrossRef]
- Chow, S.N.; Hale, J.K. Method of Bifurcation Theory; Springer: New York, NY, USA, 1981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; He, X.; Zhou, X. The Period Function of the Generalized Sine-Gordon Equation and the Sinh-Poisson Equation. Mathematics 2024, 12, 2474. https://doi.org/10.3390/math12162474
Lu L, He X, Zhou X. The Period Function of the Generalized Sine-Gordon Equation and the Sinh-Poisson Equation. Mathematics. 2024; 12(16):2474. https://doi.org/10.3390/math12162474
Chicago/Turabian StyleLu, Lin, Xiaokai He, and Xing Zhou. 2024. "The Period Function of the Generalized Sine-Gordon Equation and the Sinh-Poisson Equation" Mathematics 12, no. 16: 2474. https://doi.org/10.3390/math12162474
APA StyleLu, L., He, X., & Zhou, X. (2024). The Period Function of the Generalized Sine-Gordon Equation and the Sinh-Poisson Equation. Mathematics, 12(16), 2474. https://doi.org/10.3390/math12162474