Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods
Abstract
:1. Introduction
2. Deriving the New Parameter Based on the Quadratic Model
Algorithm 1. The new conjugate gradient algorithm for minimizing. |
. |
then stop. |
by (9) and (10). |
by (19). |
. |
and go to stage 1. |
3. Convergence Analysis of the Uniformly Convex Function
4. Numerical Results
- If was not satisfied.
- If iterations exceed 2000.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, W.; Ren, J.; Zheng, X.; Liu, Z.; Liang, Y. A new DY conjugate gradient method and applications to image denoising. IEICE Trans. Inf. Syst. 2018, 12, 2984–2990. [Google Scholar] [CrossRef]
- Yu, G.; Huang, J.; Zhou, Y. A descent spectral conjugate gradient method for impulse noise removal. Appl. Math. Lett. 2010, 23, 555–560. [Google Scholar] [CrossRef]
- Huang, T.; Yang, G.; Tang, G. A fast two-dimensional median filtering algorithm. Image Process. Based Partial Differ. Equ. 1979, 27, 13–18. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Supian, S.; Mamat, M. New class of hybrid conjugate gradient coefficients with guaranteed descent and efficient line search. IOP Conf. Ser. Mater. Sci. Eng. 2019, 621, 012021. [Google Scholar] [CrossRef]
- Awwal, A.M.; Yahaya, M.M.; Pakkaranang, N.; Pholasa, N. A New Variant of the Conjugate Descent Method for Solving Unconstrained Optimization Problems and Applications. Mathematics 2024, 12, 2430. [Google Scholar] [CrossRef]
- Malik, M.; Abas, S.S.; Mamat, M.; Mohammed, I.S. A new hybrid conjugate gradient method with global convergence properties. Int. J. Adv. Sci. Technol. 2020, 29, 199–210. [Google Scholar]
- Hager, W.W.; Zhang, H. A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2006, 2, 35–58. [Google Scholar]
- Hassan, B.A.; Jabbar, H.N.; Laylani, Y.A.; Moghrabi, I.A.R.; Alissa, A.J. An enhanced fletcher-reeves-like conjugate gradient methods for image restoration. Int. J. Electr. Comput. Eng. 2023, 13, 6268–6276. [Google Scholar] [CrossRef]
- Fletcher, R. Function minimization by conjugate gradients. Comput. J. 1964, 7, 149–154. [Google Scholar] [CrossRef]
- Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436. [Google Scholar] [CrossRef]
- Dai, Y.H.; Yuan, Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM J. Optim. 1999, 10, 177–182. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Liu, Y.; Storey, C. Efficient generalized conjugate gradient algorithms, part 1: Theory. J. Optim. Theory Appl. 1991, 69, 129–137. [Google Scholar] [CrossRef]
- Polak, E.; Ribiere, G. Note sur la Convergence de Directions Conjugate, Revue Francaise Informant. Reserche. Opertionelle 1969, 3, 35–43. [Google Scholar]
- Perry, A. A Modified Conjugate Gradient Algorithm. Oper. Res. 1978, 26, 1073–1078. [Google Scholar] [CrossRef]
- Moghrabi, I.A.R. A new scaled secant-type conjugate gradient algorithm. In Proceedings of the 2017 European Conference on Electrical Engineering and Computer Science, EECS 2017, Bern, Switzerland, 17–19 November 2017. [Google Scholar] [CrossRef]
- Wu, C.; Chen, G. New type of conjugate gradient algorithms for unconstrained optimization problems. J. Syst. Eng. Electron. 2010, 21, 1000–1007. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization-Springer Series in Operations Research; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wolfe, P. Convergence conditions for ascent methods. II: Some corrections. SIAM Rev. 1971, 3, 185–188. [Google Scholar] [CrossRef]
- Hassan, B.A.; Moghrabi, I.A.R. A modified secant equation quasi-Newton method for unconstrained optimization. J. Appl. Math. Comput. 2023, 69, 451–464. [Google Scholar] [CrossRef]
- Dai, Y.; Han, J.; Liu, G.; Sun, D.; Yin, H.; Yuan, Y.X. Convergence Properties of Nonlinear Conjugate Gradient Methods. SIAM J. Optim. 2000, 10, 345–358. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Salihu, N. Two sufficient descent spectral conjugate gradient algorithms for unconstrained optimization with application. Optim. Eng. 2024, 31, 1–26. [Google Scholar] [CrossRef]
- Hassan, B.A.; Taha, M.W.; Kadoo, F.H.; Mohammed, S.I. A new modification into Quasi-Newton equation for solving unconstrained optimization problems. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2394. [Google Scholar]
- Salihu, N.; Kumam, P.; Sulaiman, I.M.; Arzuka, I.; Kumam, W. An efficient Newton-like conjugate gradient method with restart strategy and its application. Math. Comput. Simul. 2024, 226, 354–372. [Google Scholar] [CrossRef]
- Malik, M.; Mamat, M.; Abas, S.S.; Sulaiman, I.M. Performance Analysis of New Spectral and Hybrid Conjugate Gradient Methods for Solving Unconstrained Optimization Problems. IAENG Int. J. Comput. Sci. 2021, 48, 66–79. [Google Scholar]
- Salihu, N.; Kumam, P.; Muhammad Yahaya, M.; Seangwattana, T. A revised Liu–Storey Conjugate gradient parameter for unconstrained optimization problems with applications. Eng. Optim. 2024, 1–25. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Rapajić, S.; Kamandi, A.; Kumam, P.; Papp, Z. Relaxed-inertial derivative-free algorithm for systems of nonlinear pseudo-monotone equations. Comput. Appl. Math. 2024, 43, 239. [Google Scholar] [CrossRef]
- Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 2005, 16, 170–192. [Google Scholar] [CrossRef]
- Yuan, G.; Wei, Z.; Lu, X. Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search. Appl. Math. Model. 2018, 47, 811–825. [Google Scholar] [CrossRef]
- Dolan, E.D.; More, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213. [Google Scholar] [CrossRef]
Image | Noise Level r (%) | FR-Method | BT1-Method | BT2-Method | BT3-Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NI | NF | PSNR (dB) | NI | NF | PSNR (dB) | NI | NF | PSNR (dB) | NI | NF | PSNR (dB) | ||
Le | 50 | 82 | 153 | 30.5529 | 42.0 | 90.0 | 30.5077 | 55.0 | 109.0 | 30.4726 | 30.0 | 60.0 | 30.779 |
70 | 81 | 155 | 27.4824 | 45.0 | 97.0 | 27.3425 | 56.0 | 111.0 | 27.5176 | 53.0 | 107.0 | 27.2491 | |
90 | 108 | 211 | 22.8583 | 53.0 | 113.0 | 22.9824 | 58.0 | 115.0 | 23.0099 | 54.0 | 109.0 | 22.8871 | |
Ho | 50 | 52 | 53 | 30.6845 | 30.0 | 63.0 | 35.2072 | 35.0 | 70.0 | 34.9453 | 36.0 | 72.0 | 35.1792 |
70 | 63 | 116 | 31.2564 | 32.0 | 66.0 | 30.9014 | 39.0 | 78.0 | 30.7493 | 29.0 | 58.0 | 30.9249 | |
90 | 111 | 214 | 25.287 | 36.0 | 74.0 | 25.1023 | 52.0 | 103.0 | 25.267 | 48.0 | 96.0 | 25.1356 | |
El | 50 | 35 | 36 | 33.9129 | 24.0 | 48.0 | 33.8687 | 30.0 | 58.0 | 33.862 | 26.0 | 51.0 | 33.9353 |
70 | 38 | 39 | 31.864 | 17.0 | 32.0 | 31.9634 | 30.0 | 58.0 | 31.7931 | 34.0 | 68.0 | 31.7348 | |
90 | 65 | 114 | 28.2019 | 39.0 | 80.0 | 28.2067 | 44.0 | 86.0 | 28.0416 | 44.0 | 88.0 | 28.1316 | |
c512 | 50 | 59 | 87 | 35.5359 | 28.0 | 60.0 | 35.296 | 34.0 | 69.0 | 35.862 | 26.0 | 51.0 | 35.3528 |
70 | 78 | 142 | 30.6259 | 34.0 | 72.0 | 30.6113 | 39.0 | 79.0 | 30.6145 | 34.0 | 68.0 | 30.6749 | |
90 | 121 | 236 | 24.3962 | 47.0 | 98.0 | 24.9266 | 50.0 | 101.0 | 24.8411 | 44.0 | 88.0 | 24.8521 |
BT1 | BT2 | BT3 | FR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Function | DIM | Initial | NOI | NOF | CPUT | NOI | NOF | CPUT | NOI | NOF | CPUT | NOI | NOF | CPUT |
1 | QUARTICM | 100 | (11,…,11) | 4 | 101 | 0.002562 | *** | *** | *** | *** | *** | *** | 17 | 108 | 0.00045 |
2 | QUARTICM | 1000 | (11,…,11) | *** | *** | *** | 4 | ## | 0.00287 | 6 | 202 | 0.00248 | 18 | 122 | 0.000572 |
3 | BIGGSB1 | 2 | (3,3) | 1 | 3 | 0.002401 | 1 | 3 | 0.00294 | 1 | 3 | 0.00303 | 1 | 3 | 0.002224 |
4 | BIGGSB1 | 2 | (11,11) | 1 | 3 | 0.002209 | 1 | 3 | 0.00192 | 1 | 3 | 0.00164 | 1 | 3 | 0.002617 |
5 | QUADRATIC QF | 2 | (0.01,0.01) | 2 | 4 | 0.002074 | 2 | 4 | 0.0038 | 2 | 4 | 0.00349 | 2 | 4 | 0.00311 |
6 | QUARTC | 100 | (11,…,11) | 4 | 101 | 0.010275 | *** | *** | *** | *** | *** | *** | 17 | 108 | 0.011307 |
7 | EXT PENALTY | 8000 | (1,1,…,1) | *** | *** | *** | *** | *** | *** | 3 | 30 | 0.00287 | *** | *** | *** |
8 | DIAGONAL 6 | 1000 | (0.5,…,0.5) | 5 | 33 | 0.017629 | 5 | 32 | 0.02154 | *** | *** | *** | 11 | 12 | 0.003807 |
9 | DIAGONAL 6 | 10,000 | (0.5,…,0.5) | 5 | 56 | 0.05131 | *** | *** | *** | *** | *** | *** | *** | *** | *** |
10 | DIAGONAL 6 | 50,000 | (0.5,…,0.5) | 3 | 33 | 0.13378 | *** | *** | *** | 4 | 58 | 0.23391 | *** | *** | *** |
11 | EXT DENSCHNB | 10,000 | (1,1,…,1) | 1 | 3 | 0.001311 | 1 | 3 | 0.00078 | 1 | 3 | 0.00074 | 1 | 3 | 0.00144 |
12 | EXT DENSCHNB | 50,000 | (1,1,…,1) | 1 | 3 | 0.00241 | 1 | 3 | 0.00282 | 1 | 3 | 0.00293 | 1 | 3 | 0.002363 |
13 | EXT DENSCHNB | 100,000 | (1,1,…,1) | 1 | 3 | 0.005923 | 1 | 3 | 0.00398 | 1 | 3 | 0.00579 | 1 | 3 | 0.005875 |
14 | MATYAS | 2 | (1,1) | 6 | 17 | 0.001374 | 6 | 17 | 0.00073 | 6 | 17 | 0.00078 | 7 | 36 | 0.000423 |
15 | MATYAS | 2 | (0.5,0.5) | 6 | 17 | 0.00052 | 6 | 17 | 0.00083 | 6 | 17 | 0.00059 | 7 | 36 | 0.000422 |
16 | BRENT | 2 | (11,11) | 1 | 3 | 0.000396 | 1 | 3 | 0.0004 | 1 | 3 | 0.00049 | 1 | 3 | 0.00071 |
17 | BRENT | 2 | (13,13) | 1 | 3 | 0.000602 | 1 | 3 | 0.00068 | 1 | 3 | 0.00045 | 1 | 3 | 0.000803 |
18 | BRENT | 2 | (3,3) | 1 | 3 | 0.000679 | 1 | 3 | 0.00037 | 1 | 3 | 0.00054 | 1 | 3 | 0.000375 |
19 | Rotated Ellipse 2 | 2 | (0.5, -1) | 13 | 21 | 0.001451 | 13 | 21 | 0.00137 | 13 | 21 | 0.00127 | 10 | 17 | 0.000349 |
20 | Rotated Ellipse 2 | 2 | (5,-5) | 1 | 3 | 0.000438 | 1 | 3 | 0.00044 | 1 | 3 | 0.00056 | 1 | 3 | 0.000501 |
21 | DIAGONAL 1 | 2 | (1,1) | 13 | 24 | 0.005212 | 12 | 19 | 0.00367 | 12 | 20 | 0.00372 | 15 | 23 | 0.003264 |
22 | DIAGONAL 2 | 2 | (1,1) | 14 | 19 | 0.003093 | 9 | 12 | 0.00236 | 10 | 13 | 0.00229 | 12 | 13 | 0.00164 |
23 | Aluffi-Pentini | 2 | (1,1) | 5 | 8 | 0.000786 | 5 | 8 | 0.00073 | 5 | 8 | 0.00119 | 6 | 10 | 0.000516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, B.A.; Moghrabi, I.A.R.; Ameen, T.A.; Sulaiman, R.M.; Sulaiman, I.M. Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods. Mathematics 2024, 12, 2754. https://doi.org/10.3390/math12172754
Hassan BA, Moghrabi IAR, Ameen TA, Sulaiman RM, Sulaiman IM. Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods. Mathematics. 2024; 12(17):2754. https://doi.org/10.3390/math12172754
Chicago/Turabian StyleHassan, Bassim A., Issam A. R. Moghrabi, Thaair A. Ameen, Ranen M. Sulaiman, and Ibrahim Mohammed Sulaiman. 2024. "Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods" Mathematics 12, no. 17: 2754. https://doi.org/10.3390/math12172754
APA StyleHassan, B. A., Moghrabi, I. A. R., Ameen, T. A., Sulaiman, R. M., & Sulaiman, I. M. (2024). Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods. Mathematics, 12(17), 2754. https://doi.org/10.3390/math12172754