Some Fractional Integral and Derivative Formulas Revisited
Abstract
:1. Introduction
2. Preliminaries
3. Fractional Integrals
3.1. Fractional Integral of the Power Function
3.2. Fractional Integral of the Exponential Function
3.3. Fractional Integral Formula of the Logarithmic Function
4. Fractional Derivatives
4.1. Fractional Derivative of the Power Function
4.2. Fractional Derivative of the Exponential Function
4.3. Fractional Derivative of the Logarithm Function
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leibniz, G.W. Leibniz an de L’Hospital (letter from Hanover, Germany, September 30, 1695). In Oeuvres Mathématiques de Leibniz. Correspondance de Leibniz avec Hugens, van Zulichem et le Marquis de L’Hospital; Libr. de A. Franck: Paris, France, 1853; Volume 2, pp. 297–302. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’École Polytech. 1832, 13, 1–69. [Google Scholar]
- Podlubny, I.; Magin, R.L.; Trymorush, I. Niels Henrik Abel and the birth of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 1068–1075. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon & Breach: Amsterdam, The Netherlands, 1993; [English translation from Russian, Nauka i Techika, Minsk (1987)]. [Google Scholar]
- Bateman, H.; Erdélyi, A.; Magnus, W.; Oberhettinger, F. Tables of Integral Transforms; McGraw-Hill: New York, NY, USA, 1954; Volume 2. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd ed.; World Scientific: Singapore, 2022; [1st edition 2010]. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell: Danbury, CT, USA, 2021; [1st edition 2006]. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: New York, NY, USA, 2009. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Release 1.2.0 of 2024-03-15. Available online: https://dlmf.nist.gov (accessed on 6 September 2024).
- Spiegel, M.R. Mathematical Handbook of Formulas and Tables; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, CA, USA, 1999. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: More Special Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Santander, J.L.; Mainardi, F. Some Fractional Integral and Derivative Formulas Revisited. Mathematics 2024, 12, 2786. https://doi.org/10.3390/math12172786
González-Santander JL, Mainardi F. Some Fractional Integral and Derivative Formulas Revisited. Mathematics. 2024; 12(17):2786. https://doi.org/10.3390/math12172786
Chicago/Turabian StyleGonzález-Santander, Juan Luis, and Francesco Mainardi. 2024. "Some Fractional Integral and Derivative Formulas Revisited" Mathematics 12, no. 17: 2786. https://doi.org/10.3390/math12172786
APA StyleGonzález-Santander, J. L., & Mainardi, F. (2024). Some Fractional Integral and Derivative Formulas Revisited. Mathematics, 12(17), 2786. https://doi.org/10.3390/math12172786