Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes
Abstract
:1. Introduction
2. Methods and Simulations Results
2.1. Methodology
2.2. Stratified Cox Model
2.3. Extended Cox Model
2.4. Simulation Studies
- 1.
- Covariates: two time-independent covariates, and , and a single dichotomous time-dependent variable, which is defined as
- 2.
- 3.
- Weibull survival times: Weibull survival times are generated by
- 4.
- Exponential survival times: exponential event times are then generated by
- 5.
- Censoring times: censoring times are generated from the uniform distribution , where is selected to yield the desired censoring rate: 10%, 30%, and 45%.
- 6.
- Data frame: Steps 1 to 4 produces right-censored survival data that constitutes of the observed time for the ith subject, censoring indicator , invariant covariates , and the time-variant variable , the time where the time-varying covariate switches from 0 to 1 . The final dataset consists of .
2.4.1. Weibull Survival Times
2.4.2. Exponential Survival Times
3. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Survival Analysis: Regression Modelling of Time to Event Data; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Merie, H.E.; Dessie, A.A.; Bizuneh, M.T. Modelling the Transition Process from Higher Education to Employment: The Case of Undergraduates from Debre Markos University. Educ. Res. Int. 2022, 2022, 1119825. [Google Scholar] [CrossRef]
- Raoniar, R.; Maqbool, S.; Pathak, A.; Chugh, M.; Maurya, A.K. Hazard-based duration approach for understanding pedestrian crossing risk exposure at signalised intersection crosswalks–A case study of Kolkata, India. Transp. Res. Part F Traffic Psychol. Behav. 2022, 85, 47–68. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, J.; Zhang, Y. A hybrid repair-replacement policy in the proportional hazards model. Eur. J. Oper. Res. 2023, 304, 1011–1021. [Google Scholar] [CrossRef]
- Orbe, J.; Ferreira, E.; Núñez-Antón, V. Comparing proportional hazards and accelerated failure time models for survival analysis. Stat. Med. 2002, 21, 3493–3510. [Google Scholar] [CrossRef]
- Adeleke, K.; Abiodun, A.; Ipinyomi, R. Extended Cox Modelling of Survival Data with Guarantee Time. Malays. J. Appl. Sci. 2018, 3, 21–33. [Google Scholar]
- Kleinbaum, D.G.; Klein, M. Evaluating the proportional hazards assumption. In Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2012; pp. 161–200. [Google Scholar]
- Ata, N.; Sözer, M.T. Cox regression models with nonproportional hazards applied to lung cancer survival data. Hacet. J. Math. Stat. 2007, 36, 157–167. [Google Scholar]
- Maryama, A. Model Regresi Stratified Cox dan Extended Cox untuk Mengatasi Non Proportional Hazard. Ph.D. Thesis, Tesis ITS, Madrid, Spain, 2016. [Google Scholar]
- Purnami, S.W.; Arlianni, K.W.; Andari, S.; Sagiran, S.; Khoirunnisa, E.; Widada, W. Influencing factors that improve mental conditions patients with complementary therapy at Nur Hidayah Hospital, Bantul, Yogyakarta. In Proceedings of the BIO Web of Conferences, EDP Sciences, Wuhan, China, 27–28 May 2023; Volume 75, p. 01006. [Google Scholar]
- Seo, Y.S.; Yuk, J.S. Osteoporosis and Fracture Risk Following Benign Hysterectomy among Female Patients in Korea. JAMA Netw. Open 2023, 6, e2347323. [Google Scholar] [CrossRef]
- Phonskaningtyas, I.C. Pengaruh Hu-Care terhadap Rentang Waktu Kekambuhan Penyakit Gagal Ginjal Kronis di Rumah Sakit Nur Hidayah Bantul Menggunakan Regresi Cox. Ph.D. Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2023. [Google Scholar]
- Stanley, C.; Molyneux, E.; Mukaka, M. Comparison of performance of exponential, Cox proportional hazards, weibull and frailty survival models for analysis of small sample size data. J. Med Stat. Inform. 2016, 4, 2–3. [Google Scholar] [CrossRef]
- Burton, A.; Altman, D.G.; Royston, P.; Holder, R.L. The design of simulation studies in medical statistics. Stat. Med. 2006, 25, 4279–4292. [Google Scholar] [CrossRef]
- Mehrotra, D.V.; Su, S.C.; Li, X. An efficient alternative to the stratified cox model analysis. Stat. Med. 2012, 31, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Olaniran, O.R.; Abdullah, M.A.A. Bayesian analysis of extended cox model with time-varying covariates using bootstrap prior. J. Mod. Appl. Stat. Methods 2020, 18, 7. [Google Scholar] [CrossRef]
- Ratnaningsih, D.; Saefuddin, A.; Kurnia, A.; Mangku, I. Stratified-extended cox model in survival modeling of non-proportional hazard. IOP Conf. Ser. Earth Environ. Sci. 2019, 299, 012023. [Google Scholar] [CrossRef]
- Morris, T.P.; White, I.R.; Crowther, M.J. Using simulation studies to evaluate statistical methods. Stat. Med. 2019, 38, 2074–2102. [Google Scholar] [CrossRef]
- Ngwa, J.S.; Cabral, H.J.; Cheng, D.M.; Gagnon, D.R.; LaValley, M.P.; Cupples, L.A. Generating survival times with time-varying covariates using the Lambert W function. Commun. Stat.-Simul. Comput. 2022, 51, 135–153. [Google Scholar] [CrossRef]
- Bender, R.; Augustin, T.; Blettner, M. Generating survival times to simulate Cox proportional hazards models. Stat. Med. 2005, 24, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- Klein, J.P.; Moeschberger, M.L. Survival Analysis: Techniques for Censored and Truncated Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Allison, P.D. Survival analysis. Rev. Guide Quant. Methods Soc. Sci. 2010, 413, 425. [Google Scholar]
- Collett, D. Modelling Survival Data in Medical Research; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Therneau, T.M.; Grambsch, P.M. The cox model. In Modeling Survival Data: Extending the Cox Model; Springer: Berlin/Heidelberg, Germany, 2000; pp. 39–77. [Google Scholar]
- Andersen, P.K.; Borgan, O.; Gill, R.D.; Keiding, N. Statistical Models Based on Counting Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Austin, P.C. Generating survival times to simulate Cox proportional hazards models with time-varying covariates. Stat. Med. 2012, 31, 3946–3958. [Google Scholar] [CrossRef]
- Xu, R.; Luo, Y.; Glynn, R.; Johnson, D.; Jones, K.L.; Chambers, C. Time-dependent propensity score for assessing the effect of vaccine exposure on pregnancy outcomes through pregnancy exposure cohort studies. Int. J. Environ. Res. Public Health 2014, 11, 3074–3085. [Google Scholar] [CrossRef]
- Zhang, Z. Propensity score method: A non-parametric technique to reduce model dependence. Ann. Transl. Med. 2017, 5, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Anjullo, B.B. A Simulation Study to Evaluate the Performance of Extended Cox model in Testing Treatment Effect with Possible Non-proportional Hazards. Int. J. Progress. Sci. Technol. 2018, 10, 284–293. [Google Scholar]
- Ratnaningsih, D.J.; Saefuddin, A.; Kurnia, A. Stratified-extended Cox with frailty model for non-proportional hazard: A statistical approach to student retention data from Universitas Terbuka in Indonesia. Thail. Stat. 2021, 19, 209–228. [Google Scholar]
- Dunkler, D.; Ploner, M.; Schemper, M.; Heinze, G. Weighted Cox regression using the R package coxphw. J. Stat. Softw. 2018, 84, 1–26. [Google Scholar] [CrossRef]
Model | Parameter | Bias | Est SE | Emp SE | Cov 95% | MSE |
---|---|---|---|---|---|---|
n = 50 | ||||||
Cox PH | 0.2826 | 0.2397 | 0.2564 | 0.8165 | 0.1456 | |
0.2806 | 0.3721 | 0.4033 | 0.8935 | 0.2413 | ||
−1.1843 | 0.4145 | 0.4677 | 0.1781 | 1.6212 | ||
Stratified | 0.2650 | 0.2496 | 0.2627 | 0.8587 | 0.1392 | |
0.2572 | 0.3822 | 0.4055 | 0.9122 | 0.2305 | ||
Extended | 0.0573 | 0.2391 | 0.2503 | 0.9495 | 0.0659 | |
0.0530 | 0.3651 | 0.3880 | 0.9427 | 0.1533 | ||
−0.0409 | 0.4171 | 0.4351 | 0.9442 | 0.1910 | ||
n = 1000 | ||||||
Cox PH | 0.1963 | 0.0465 | 0.0485 | 0.0096 | 0.0409 | |
0.1978 | 0.0744 | 0.0775 | 0.2468 | 0.0451 | ||
−1.0278 | 0.0811 | 0.0878 | 0.0000 | 1.0641 | ||
Stratified | 0.1915 | 0.0468 | 0.0485 | 0.0131 | 0.0390 | |
0.1901 | 0.0742 | 0.0763 | 0.2741 | 0.0419 | ||
Extended | 0.0024 | 0.0479 | 0.0481 | 0.9486 | 0.0023 | |
0.0018 | 0.0749 | 0.0746 | 0.9508 | 0.0056 | ||
−0.0015 | 0.0864 | 0.0869 | 0.9498 | 0.0075 |
Model | Parameter | Bias | Est SE | Emp SE | Cov 95% | MSE |
---|---|---|---|---|---|---|
n = 50 | ||||||
Cox PH | 0.3090 | 0.2676 | 0.2887 | 0.8326 | 0.1788 | |
0.3075 | 0.4181 | 0.4547 | 0.8962 | 0.3013 | ||
−1.1695 | 0.4653 | 0.5134 | 0.2817 | 1.6312 | ||
Stratified | 0.2885 | 0.2783 | 0.2970 | 0.8706 | 0.1714 | |
0.2788 | 0.4292 | 0.4568 | 0.9186 | 0.2864 | ||
Extended | 0.0670 | 0.2646 | 0.2793 | 09474 | 0.0825 | |
0.0574 | 0.4081 | 0.4337 | 0.9464 | 0.1914 | ||
−0.0466 | 0.4646 | 0.4852 | 0.9471 | 0.2376 | ||
n = 1000 | ||||||
Cox PH | 0.2122 | 0.0513 | 0.0536 | 0.0131 | 0.0479 | |
0.2156 | 0.0829 | 0.0859 | 0.2657 | 0.0539 | ||
−1.0158 | 0.0909 | 0.0960 | 0.0000 | 1.0409 | ||
Stratified | 0.2059 | 0.0515 | 0.0536 | 0.0185 | 0.0453 | |
0.2037 | 0.0826 | 0.0845 | 0.3099 | 0.0486 | ||
Extended | 0.0028 | 0.0527 | 0.0528 | 0.9511 | 0.0028 | |
0.0017 | 0.0833 | 0.0832 | 0.9493 | 0.0069 | ||
−0.0015 | 0.0959 | 0.0966 | 0.9507 | 0.0093 |
Model | Parameter | Bias | Est SE | Emp SE | Cov 95% | MSE |
---|---|---|---|---|---|---|
n = 50 | ||||||
Cox PH | 0.3388 | 0.3055 | 0.3334 | 0.8492 | 0.2259 | |
0.3358 | 0.4519 | 0.5277 | 0.9049 | 0.3911 | ||
−1.1566 | 0.05335 | 0.5852 | 0.4101 | 1.6802 | ||
Stratified | 0.3145 | 0.3170 | 0.3410 | 0.8872 | 0.2152 | |
0.3029 | 1.4418 | 0.5640 | 0.9274 | 0.4099 | ||
Extended | 0.0808 | 0.2988 | 0.3186 | 0.9457 | 0.1080 | |
0.0663 | 0.4681 | 0.4993 | 0.9470 | 0.2536 | ||
−0.0529 | 0.5282 | 0.5551 | 0.9471 | 0.3109 | ||
n = 1000 | ||||||
Cox PH | 0.2258 | 0.0576 | 0.0601 | 0.0224 | 0.0546 | |
0.2325 | 0.0946 | 0.0979 | 0.3095 | 0.0637 | ||
−0.9986 | 0.1036 | 0.1069 | 0.0000 | 1.0086 | ||
Stratified | 0.2186 | 0.0578 | 0.0599 | 0.0315 | 0.0514 | |
0.2174 | 0.0942 | 0.0962 | 0.3646 | 0.0565 | ||
Extended | 0.0030 | 0.0587 | 0.0584 | 0.9510 | 0.0034 | |
0.0026 | 0.0947 | 0.0946 | 0.9520 | 0.0089 | ||
−0.0084 | 0.1083 | 0.1081 | 0.9511 | 0.0117 |
Model | Parameter | Bias | Est SE | Emp SE | Cov 95% | MSE |
---|---|---|---|---|---|---|
n = 50 | ||||||
Cox PH | 0.2666 | 0.2348 | 0.2554 | 0.8279 | 0.1363 | |
0.2586 | 0.3684 | 0.4072 | 0.8917 | 0.2326 | ||
−1.9392 | 1.1496 | 0.5756 | 0.0065 | 4.0916 | ||
Stratified | 0.2364 | 0.2424 | 0.2615 | 0.8687 | 0.1243 | |
0.2244 | 0.3762 | 0.4066 | 0.9147 | 0.2157 | ||
Extended | 0.0538 | 0.2338 | 0.2451 | 0.9444 | 0.0629 | |
0.0471 | 0.3602 | 0.3837 | 0.9423 | 0.1494 | ||
−0.0378 | 0.4781 | 0.4946 | 0.9456 | 0.2459 | ||
n = 1000 | ||||||
Cox PH | 0.1706 | 0.0452 | 0.0467 | 0.0335 | 0.0313 | |
0.1705 | 0.0733 | 0.0768 | 0.3653 | 0.0349 | ||
−1.7911 | 0.0915 | 0.0988 | 0.0000 | 3.2179 | ||
Stratified | 0.1519 | 0.0456 | 0.0471 | 0.0848 | 0.0253 | |
0.1499 | 0.0735 | 0.0757 | 0.4730 | 0.0282 | ||
Extended | 0.0024 | 0.0472 | 0.0470 | 0.9502 | 0.0022 | |
0.0017 | 0.0744 | 0.0741 | 0.9532 | 0.0055 | ||
−0.0011 | 0.1008 | 0.0997 | 0.9533 | 0.0099 |
Model | Parameter | Bias | Est SE | Emp SE | Cov 95% | MSE |
---|---|---|---|---|---|---|
n = 50 | ||||||
Cox PH | 0.2807 | 0.2584 | 0.2795 | 0.8501 | 0.1569 | |
0.2718 | 0.4073 | 0.4465 | 0.9015 | 0.2732 | ||
−2.0481 | 0.5085 | 0.5775 | 0.0067 | 4.5281 | ||
Stratified | 0.2552 | 0.2672 | 0.2859 | 0.8871 | 0.1469 | |
0.2416 | 0.4174 | 0.4466 | 0.9189 | 0.2578 | ||
Extended | 0.0622 | 0.2544 | 0.2658 | 0.9477 | 0.0745 | |
0.0527 | 0.3949 | 0.4153 | 0.9472 | 0.1752 | ||
−0.0370 | 0.5051 | 0.5214 | 0.9503 | 0.2732 | ||
n = 1000 | ||||||
Cox PH | 0.1828 | 0.0489 | 0.0509 | 0.0390 | 0.0360 | |
0.1827 | 0.0804 | 0.0843 | 0.3863 | 0.0405 | ||
−1.8189 | 0.0958 | 0.1035 | 0.0000 | 3.3194 | ||
Stratified | 0.1631 | 0.0494 | 0.0514 | 0.0875 | 0.0292 | |
0.1602 | 0.0807 | 0.0829 | 0.4918 | 0.0326 | ||
Extended | 0.0028 | 0.0511 | 0.0509 | 0.9505 | 0.0026 | |
0.0015 | 0.0816 | 0.0815 | 0.9515 | 0.0066 | ||
−0.0013 | 0.1061 | 0.1054 | 0.9540 | 0.0111 |
Model | Parameter | Bias | Est SE | Emp SE | Cov 95% | MSE |
---|---|---|---|---|---|---|
n = 50 | ||||||
Cox PH | 0.3153 | 0.2926 | 0.3263 | 0.8561 | 0.2058 | |
0.3025 | 0.4678 | 0.5222 | 0.9034 | 0.3642 | ||
−2.1212 | 0.5574 | 0.6356 | 0.0123 | 4.9034 | ||
Stratified | 0.2868 | 0.3031 | 0.3332 | 0.8936 | 0.1933 | |
0.2671 | 0.4806 | 0.5201 | 0.9286 | 0.3418 | ||
Extended | 0.0750 | 0.2841 | 0.3034 | 0.9448 | 0.0977 | |
0.0581 | 0.4485 | 0.4741 | 0.9483 | 0.2281 | ||
−0.0428 | 0.5487 | 0.5691 | 0.9498 | 0.3257 | ||
n = 1000 | ||||||
Cox PH | 0.1943 | 0.0542 | 0.0566 | 0.0497 | 0.0409 | |
0.1960 | 0.0909 | 0.0960 | 0.4300 | 0.0476 | ||
−1.8586 | 0.1029 | 0.1100 | 0.0000 | 3.4663 | ||
Stratified | 0.1733 | 0.0547 | 0.0570 | 0.1113 | 0.0333 | |
0.1714 | 0.0912 | 0.0941 | 0.5381 | 0.0382 | ||
Extended | 0.0028 | 0.0565 | 0.0562 | 0.9521 | 0.0032 | |
0.0022 | 0.0921 | 0.0923 | 0.9499 | 0.0085 | ||
−0.0012 | 0.1144 | 0.1136 | 0.9555 | 0.0129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharela, I.A.; Fletcher, L.; Chen, D.-G. Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes. Mathematics 2024, 12, 2903. https://doi.org/10.3390/math12182903
Maharela IA, Fletcher L, Chen D-G. Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes. Mathematics. 2024; 12(18):2903. https://doi.org/10.3390/math12182903
Chicago/Turabian StyleMaharela, Iketle Aretha, Lizelle Fletcher, and Ding-Geng Chen. 2024. "Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes" Mathematics 12, no. 18: 2903. https://doi.org/10.3390/math12182903
APA StyleMaharela, I. A., Fletcher, L., & Chen, D. -G. (2024). Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes. Mathematics, 12(18), 2903. https://doi.org/10.3390/math12182903