A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis
Abstract
:1. Introduction
2. Literature Review
Reference | Model | Key Finding | Type | Year |
---|---|---|---|---|
[23] | Ranking scales | Variable selection in DEA context | Static | 1998 |
[17] | Statistical approach | Reduces variables in DEA | Static | 2003 |
[2] | Stepwise selection | Procedures for variable selection | Static | 2007 |
[4] | Variable-selection techniques | Guidelines for selection methods | Static | 2011 |
[26] | Multicriteria selection | Classifies production batches | Static | 2012 |
[27] | cross-efficiency | Interval DEA | Stochastic | 2012 |
[5] | Alternative approaches | Alternative performance measures | Static | 2015 |
[28] | cross-efficiency | supplier selection | Static | 2015 |
[11] | Akaike’s criteria | Variable selection via AIC | stochastic | 2017 |
[9] | Stepwise selection | Port efficiency assessment | Static | 2020 |
[29] | Variable selection | Overview of variable selection | Static | 2020 |
[30] | Relevance measures | Critical values methodology | Static | 2020 |
[7] | Virtual frontier | Efficiency modeling | Static | 2021 |
[31] | Stepwise method | New method for variable selection | Static | 2021 |
[32] | Entropy measures | Novel selection method | Static | 2021 |
[6] | Machine learning | Variable selection in DEA | Static | 2023 |
3. Our Proposed Method
3.1. Stochastic DEA
3.2. The Model of OCBA
- : Total number of simulation replications.
- : Sample mean of the AIC for the i-th variable combination.
- : Variance of the AIC for the i-th variable combination.
- : The variable combination with the smallest estimated AIC.
- : The variable combination with the second smallest estimated AIC.
- : Number of replications allocated to the i-th variable combination.
- : The difference between the sample means of the AIC for combinations i and j, calculated as .
- (1)
- Initialize: Set and conduct simulations for all l combinations. Initialize to .
- (2)
- Update: Calculate the sample means and variances for each combination.
- (3)
- (4)
- Simulate: For each combination i, perform an additional simulations.
- (5)
- Termination: If the cumulative simulation count is less than the total budget , increment t by 1 and return to the Update step; otherwise, terminate the process.
4. Numerical Example with Stochastic Data
5. Real Case Study
5.1. Supplier Selection
5.2. Tourism Technology Jobs Ranking
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emrouznejad, A.; Yang, G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2017, 61, 4–8. [Google Scholar] [CrossRef]
- Wagner, J.M.; Shimshak, D.G. Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives. Eur. J. Oper. Res. 2007, 180, 57–67. [Google Scholar] [CrossRef]
- Dyson, R.G.; Shale, E.A. Data envelopment analysis, operational research and uncertainty. J. Oper. Res. Soc. 2010, 61, 25–34. [Google Scholar] [CrossRef]
- Nataraja, N.R.; Johnson, A.L. Guidelines for using variable selection techniques in data envelopment analysis. Eur. J. Oper. Res. 2011, 215, 662–669. [Google Scholar] [CrossRef]
- Toloo, M.; Tichỳ, T. Two alternative approaches for selecting performance measures in data envelopment analysis. Measurement 2015, 65, 29–40. [Google Scholar] [CrossRef]
- Duras, T.; Javed, F.; Kristofer, M.; Pär, S.; Magnus, S. Using machine learning to select variables in data envelopment analysis: Simulations and application using electricity distribution data. Energy Econ. 2023, 120, 106621. [Google Scholar] [CrossRef]
- Kannan, P.M.; Govindan, M.; Rathimala, K. Modelling Efficiency of Electric Utilities Using Three Stage Virtual Frontier Data Envelopment Analysis with Variable Selection by Loads Method. Energies 2021, 14, 3436. [Google Scholar] [CrossRef]
- Benítez-Peña, S.; Bogetoft, P.; Romero Morales, D. Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach. Omega 2020, 96, 102068. [Google Scholar] [CrossRef]
- Sonal, S.; Qianmei, F. Assessment of port efficiency using stepwise selection and window analysis in data envelopment analysis. Marit. Econ. Logist. 2020, 22, 536–561. [Google Scholar]
- Emrouznejad, A.; Parker, B.R.; Tavares, G. Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Econ. Plan. Sci. 2008, 42, 151–157. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Yang, M.; Liang, L. Variable selection in data envelopment analysis via Akaike’s information criteria. Ann. Oper. Res. 2017, 253, 453–476. [Google Scholar] [CrossRef]
- Boudreau, J.W.; Ramstad, P.M. Using advanced analytics to improve talent management decisions: Examples and lessons from leading firms. J. Bus. Psychol. 2013, 28, 445–459. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer Texts in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Rynes, S.L.; Gerhart, B.; Parks, L. E-Recruitment: A Review and Future Research Agenda. Hum. Resour. Manag. Rev. 2015, 25, 302–316. [Google Scholar]
- Lepak, D.P.; Smith, K.G.; Taylor, M.S. HR strategy and firm performance: When is HR strategic and why does it impact firm performance? Acad. Manag. Ann. 2016, 10, 107–148. [Google Scholar]
- Chen, C.H.; Lee, L.H. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation; World Scientific: Singapore, 2011; Volume 1. [Google Scholar]
- Jenkins, L.; Anderson, M. A multivariate statistical approach to reducing the number of variables in data envelopment analysis. Eur. J. Oper. Res. 2003, 147, 51–61. [Google Scholar] [CrossRef]
- Wong, W.P.; Jaruphongsa, W.; Lee, L.H. Budget allocation for effective data collection in predicting an accurate DEA efficiency score. IEEE Trans. Auto. Control 2011, 56, 1235–1246. [Google Scholar] [CrossRef]
- Gholami, R.; Higón, D.A.; Emrouznejad, A. Hospital performance: Efficiency or quality? Can we have both with IT? Expert Syst. Appl. 2015, 42, 5390–5400. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Liang, L.; Wu, J.; Cook, W.D.; Zhu, J. The DEA game cross-efficiency model and its Nash equilibrium. Oper. Res. 2008, 56, 1278–1288. [Google Scholar] [CrossRef]
- Cooper, W.W. Data envelopment analysis. In Encyclopedia of Operations Research and Management Science; Springer: Cham, Switzerland, 2013; pp. 349–358. [Google Scholar]
- Friedman, L.; Sinuany-Stern, Z. Combining ranking scales and selecting variables in the DEA context: The case of industrial branches. Comp. Oper. Res. 1998, 25, 781–791. [Google Scholar] [CrossRef]
- Norman, M.; Stoker, B. Data Envelopment Analysis: The Assessment of Performance; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Adler, N.; Golany, B. Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe. Eur. J. Oper. Res. 2001, 132, 260–273. [Google Scholar] [CrossRef]
- Anzanello, M.J.; Albin, S.L.; Chaovalitwongse, W.A. Multicriteria variable selection for classification of production batches. Eur. J. Oper. Res. 2012, 218, 97–105. [Google Scholar] [CrossRef]
- Yang, F.; Ang, S.; Xia, Q.; Yang, C. Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis. Eur. J. Oper. Res. 2012, 223, 483–488. [Google Scholar] [CrossRef]
- Dotoli, M.; Epicoco, N.; Falagario, M.; Sciancalepore, F. A stochastic cross-efficiency data envelopment analysis approach for supplier selection under uncertainty. Int. Trans. Oper. Res. 2016, 23, 725–748. [Google Scholar] [CrossRef]
- Peyrache, A.; Rose, C.; Sicilia, G. Variable selection in Data Envelopment Analysis. Eur. J. Oper. Res. 2020, 282, 644–659. [Google Scholar] [CrossRef]
- Jeyms, V.C.; Manuel, M.M. Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis. Eur. J. Oper. Res. 2020, 290, 657–670. [Google Scholar]
- Subramanyam, T.; Donthi, R.; Satish Kumar, V.; Amalanathan, S.; Zalki, M. A new stepwise method for selection of input and output variables in data envelopment analysis. J. Math. Comput. Sci. 2021, 11, 703–715. [Google Scholar]
- Deng, Q.; Fu, Q.; Lian, Z. A Novel Method of Variable Selection in Data Envelopment Analysis with Entropy Measures. Int. Trans. Oper. Res. 2021, 41, 514. [Google Scholar] [CrossRef]
- Despotis, D.K.; Smirlis, Y.G. Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 2002, 140, 24–36. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Izadikhah, M. An algorithmic method to extend TOPSIS for decision-making problems with interval data. App. Math. Comp. 2006, 175, 1375–1384. [Google Scholar] [CrossRef]
- Kao, C.; Liu, S.T. Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks. Eur. J. Oper. Res. 2009, 196, 312–322. [Google Scholar] [CrossRef]
- Morita, H.; Seiford, L.M. Characteristics on stochastic DEA efficiency: Reliability and probability being efficient. J. Oper. Res. Soc. Jpn. 1999, 42, 389–404. [Google Scholar]
- Lu, T.; Liu, S.T. Ranking DMUs by Comparing DEA Cross-Efficiency Intervals Using Entropy Measures. Entropy 2016, 18, 452. [Google Scholar] [CrossRef]
- Halkos, G.E.; Salamouris, D.S. Efficiency measurement of the Greek commercial banks with the use of financial ratios: A data envelopment analysis approach. Manag. Account. Res. 2004, 15, 201–224. [Google Scholar] [CrossRef]
- Hamilton, L.C. Statistics with Stata: Version 12; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Yang, H.; Pollitt, M. Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. Eur. J. Oper. Res. 2009, 197, 1095–1105. [Google Scholar] [CrossRef]
DMU | 1 | 2 | … | n |
---|---|---|---|---|
1 | [, ] | [, ] | … | [, ] |
2 | [, ] | [, ] | … | [, ] |
… | … | … | … | … |
n | [, ] | [, ] | … | [, ] |
Average | [] | [] | … | [ |
DMU | X1 | X2 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|
1 | 4 | 3 | 2 | 5 | 3 |
2 | 8 | 5 | 3 | 4 | 1 |
3 | 5 | 7 | 5 | 9 | 4 |
4 | 2 | 8 | 1 | 3 | 2 |
5 | 1 | 3 | 6 | 7 | 1 |
6 | 4 | 1 | 2 | 6 | 4 |
No. | X1 | X2 | Y1 | Y2 | Y3 | Our Method | Ref. [11] | Ref. [27] | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reps. | AIC1 | Reps. | AIC2 | Imp. | Reps | AIC3 | Imp. | ||||||
1 | 1 | 0 | 1 | 0 | 0 | 466 | −3.94 | 100 | −1.98 | 99% | 100 | −2.38 | 65% |
2 | 1 | 0 | 1 | 1 | 0 | 157 | −0.98 | 100 | 0.66 | 248% | 100 | 1.16 | 184% |
3 | 0 | 1 | 0 | 0 | 1 | 97 | −0.91 | 100 | 1.24 | 173% | 100 | 2.44 | 137% |
4 | 1 | 0 | 0 | 1 | 0 | 10 | 2.11 | 100 | 3.11 | 32% | 100 | 4.28 | 51% |
5 | 0 | 1 | 0 | 1 | 1 | 34 | 2.02 | 100 | 3.95 | 49% | 100 | 5.59 | 64% |
6 | 0 | 1 | 0 | 1 | 0 | 10 | 2.75 | 100 | 4.34 | 37% | 100 | 5.61 | 51% |
7 | 1 | 1 | 0 | 1 | 0 | 10 | 4.38 | 100 | 5.05 | 13% | 100 | 6.05 | 28% |
8 | 0 | 1 | 1 | 0 | 1 | 10 | 3.38 | 100 | 5.50 | 39% | 100 | 7.07 | 52% |
9 | 0 | 1 | 1 | 1 | 0 | 12 | 3.85 | 100 | 5.62 | 31% | 100 | 6.83 | 44% |
10 | 1 | 1 | 1 | 1 | 0 | 10 | 6.34 | 100 | 7.12 | 11% | 100 | 8.55 | 26% |
11 | 0 | 1 | 1 | 0 | 0 | 32 | 3.93 | 100 | 5.65 | 30% | 100 | 7.27 | 46% |
12 | 0 | 1 | 1 | 1 | 1 | 10 | 5.22 | 100 | 6.89 | 24% | 100 | 8.31 | 37% |
13 | 1 | 0 | 1 | 0 | 1 | 31 | 4.44 | 100 | 5.91 | 25% | 100 | 7.21 | 38% |
14 | 1 | 0 | 0 | 1 | 1 | 10 | 4.56 | 100 | 6.09 | 25% | 100 | 7.62 | 40% |
15 | 1 | 0 | 0 | 0 | 1 | 10 | 5.41 | 100 | 5.88 | 8% | 100 | 7.14 | 24% |
16 | 1 | 1 | 1 | 0 | 0 | 10 | 5.54 | 100 | 7.26 | 24% | 100 | 9.50 | 42% |
17 | 1 | 0 | 1 | 1 | 1 | 19 | 5.70 | 100 | 7.32 | 22% | 100 | 9.35 | 39% |
18 | 1 | 1 | 0 | 1 | 1 | 10 | 6.62 | 100 | 7.99 | 17% | 100 | 10.53 | 37% |
19 | 1 | 1 | 1 | 0 | 1 | 10 | 7.34 | 100 | 8.23 | 11% | 100 | 10.38 | 29% |
20 | 1 | 1 | 0 | 0 | 1 | 12 | 6.31 | 100 | 7.04 | 10% | 100 | 9.10 | 31% |
21 | 1 | 1 | 1 | 1 | 1 | 10 | 8.12 | 100 | 9.66 | 16% | 100 | 10.30 | 21% |
Total | 980 | 2100 | 2100 | ||||||||||
Average | 47 | 100 | 45% | 52% |
X1 | X2 | X3 | X4 | Y1 | Y2 | Y3 | |
---|---|---|---|---|---|---|---|
DMU1 | (152;153;229) | (280;282;421) | 299 | (272;274;410) | (13.0;14.5;15.9) | (98.1;109.0;120.0) | (8.5;9.5;10.4) |
DMU2 | (118;118;132) | (242;242;272) | 160 | (235;235;264) | (9.4;10.5;11.5) | (66.6;74.0;81.4) | (5.6;6.2;6.8) |
DMU3 | (109;109;122) | (245;245;270) | 205 | (238;238;268) | (9.0;10.0;11.0) | (67.6;75.1;82.6) | (7.9;8.8;9.6) |
DMU4 | (34;34;39) | (93;93;107) | 120 | (101;101;128) | (4.7;5.2;5.8) | (31.2;34.7;38.1) | (2.1;2.3;2.6) |
DMU5 | (92;106;123) | (176;203;237) | 276 | (180;207;242) | (7.0;7.8;8.6) | (51.3;57.0;62.7) | (9.8;10.9;12.0) |
DMU6 | (143;157;182) | (198;217;252) | 233 | (251;275;318) | (13.0;14.5;15.9) | (85.9;95.4;105.0) | (10.7;11.9;13.1) |
DMU7 | (122;122;194) | (215;215;339) | 257 | (157;157;248) | (8.3;9.2;10.2) | (60.39;67.1;73.8) | (11.2;12.5;13.7) |
DMU8 | (162;162;249) | (338;338;518) | 635 | (169;169;259) | (6.9;7.7;8.5) | (55.1;61.3;67.4) | (9.7;10.7;11.8) |
DMU9 | (185;185;304) | (376;376;625) | 481 | (336;336;557) | (18.7;20.7;22.8) | (145.8;162.0;178.2) | (23.4;25.9;28.5) |
DMU10 | (106;106;134) | (296;296;379) | 339 | (173;173;235) | (7.3;8.2;9.0) | (53.4;59.4;65.3) | (5.2;5.7;6.3) |
DMU11 | (933;933;1033) | (1782;1782;1955) | 1762 | (1392;1392;1532) | (48.9;54.4;59.8) | (366.5;407.2;447.9) | (94.6;105.1;115.6) |
DMU12 | (69;86;71) | (124;155;129) | 123 | (104;130;130) | (4.4;4.9;5.4) | (19.2;21.4;23.5) | (8.3;9.3;10.2) |
DMU13 | (57;68;57) | (94;113;94) | 123 | (101;122;122) | (3.7;4.1;4.5) | (26.8;29.8;32.7) | (2.4;2.7;3.0) |
DMU14 | (34;35;35) | (88;90;89) | 150 | (226;230;230) | (2.8;3.2;3.4) | (69.0;76.7;84.4) | (0.0;0.0;0.0) |
DMU15 | (240;240;243) | (668;668;672) | 439 | (571;571;600) | (21.8;24.3;26.7) | (155.9;173.2;190.5) | (37.3;41.4;45.6) |
No. | X1 | X2 | X3 | X4 | Y1 | Y2 | Y3 | Total Variables | Rep. Times | AIC |
---|---|---|---|---|---|---|---|---|---|---|
K1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 410 | 0.3397 |
K2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 510 | 3.6151 |
K3 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 517 | 15.4299 |
K4 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 4 | 662 | 14.8139 |
K5 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 4 | 467 | 22.0476 |
K6 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 4 | 543 | 23.1462 |
K7 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 5 | 504 | 26.9565 |
K8 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 5 | 479 | 28.0382 |
K9 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 5 | 519 | 28.9712 |
Supplier | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | Borda Score | Ranking |
---|---|---|---|---|---|---|---|---|---|---|---|
DMU14 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 123 | 1 |
DMU4 | 2 | 3 | 5 | 8 | 1 | 9 | 1 | 1 | 8 | 97 | 2 |
DMU15 | 3 | 9 | 2 | 4 | 3 | 2 | 5 | 3 | 7 | 97 | 3 |
DMU6 | 7 | 2 | 9 | 3 | 7 | 4 | 4 | 5 | 3 | 91 | 4 |
DMU9 | 4 | 4 | 4 | 7 | 4 | 5 | 8 | 7 | 2 | 90 | 5 |
DMU2 | 6 | 8 | 11 | 2 | 10 | 3 | 3 | 4 | 4 | 84 | 6 |
DMU3 | 5 | 7 | 8 | 5 | 6 | 6 | 6 | 6 | 9 | 77 | 7 |
DMU1 | 8 | 6 | 12 | 6 | 11 | 8 | 7 | 8 | 5 | 64 | 8 |
DMU5 | 9 | 10 | 6 | 12 | 8 | 11 | 11 | 10 | 12 | 46 | 9 |
DMU12 | 14 | 14 | 3 | 14 | 5 | 7 | 10 | 9 | 15 | 44 | 10 |
DMU7 | 12 | 11 | 10 | 9 | 12 | 12 | 12 | 11 | 6 | 40 | 11 |
DMU13 | 10 | 5 | 13 | 10 | 13 | 13 | 9 | 12 | 13 | 37 | 12 |
DMU11 | 13 | 12 | 7 | 11 | 9 | 10 | 13 | 13 | 14 | 33 | 13 |
DMU10 | 11 | 13 | 14 | 13 | 14 | 14 | 14 | 14 | 10 | 18 | 14 |
DMU8 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 11 | 4 | 15 |
Variable | N | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Experience (X1) | 220 | 0.3 | 10.0 | 2.957 | 2.0802 |
Education (X2) | 220 | 14.0 | 22.0 | 15.582 | 1.0103 |
Skill (X3) | 220 | 15.0 | 45.0 | 29.527 | 5.3143 |
Environment (Y1) | 220 | 2.0 | 20.0 | 7.891 | 5.2861 |
Welfare (Y2) | 220 | 1.0 | 76.0 | 27.336 | 19.3373 |
Salary (Y3) | 220 | 0.4 | 45.0 | 17.209 | 7.7670 |
ID | X1 | X2 | X3 | Y1 | Y2 | Y3 | Total Variables | Rep. Times | AIC |
---|---|---|---|---|---|---|---|---|---|
K1 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 462 | −2.291644 |
K2 | 1 | 1 | 0 | 0 | 1 | 0 | 3 | 391 | −1.665309 |
K3 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 325 | 2.252313 |
K4 | 1 | 1 | 1 | 0 | 1 | 0 | 4 | 571 | 5.488801 |
K5 | 1 | 0 | 0 | 1 | 1 | 1 | 4 | 361 | 6.319803 |
K6 | 1 | 0 | 1 | 0 | 1 | 1 | 4 | 513 | 9.650136 |
K7 | 1 | 1 | 1 | 0 | 1 | 0 | 4 | 375 | 9.866833 |
K8 | 1 | 0 | 1 | 1 | 1 | 1 | 5 | 652 | 9.952996 |
K9 | 1 | 1 | 1 | 0 | 1 | 1 | 5 | 457 | 10.024476 |
K10 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 559 | 10.066365 |
Job | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | K10 | Borda Score | Ranking |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DMU92 | 1 | 2 | 5 | 1 | 9 | 12 | 1 | 5 | 3 | 6 | 2155 | 1 |
DMU21 | 2 | 4 | 16 | 11 | 6 | 7 | 2 | 3 | 1 | 2 | 2146 | 2 |
DMU199 | 18 | 10 | 15 | 3 | 1 | 4 | 4 | 10 | 6 | 5 | 2124 | 3 |
DMU219 | 5 | 1 | 1 | 9 | 21 | 3 | 13 | 12 | 8 | 11 | 2116 | 4 |
DMU27 | 4 | 5 | 2 | 4 | 3 | 8 | 17 | 23 | 4 | 18 | 2112 | 5 |
DMU74 | 6 | 16 | 7 | 12 | 12 | 1 | 15 | 2 | 5 | 12 | 2112 | 6 |
DMU169 | 13 | 9 | 6 | 5 | 2 | 9 | 3 | 7 | 25 | 13 | 2108 | 7 |
DMU148 | 14 | 19 | 12 | 16 | 13 | 5 | 8 | 1 | 11 | 1 | 2100 | 8 |
DMU197 | 9 | 15 | 11 | 17 | 7 | 2 | 14 | 14 | 9 | 4 | 2098 | 9 |
DMU146 | 8 | 6 | 8 | 22 | 5 | 18 | 18 | 9 | 7 | 8 | 2091 | 10 |
… | … | … | … | … | … | … | … | … | … | … | … | … |
DMU38 | 209 | 205 | 201 | 210 | 208 | 218 | 203 | 217 | 208 | 217 | 104 | 211 |
DMU163 | 207 | 216 | 200 | 216 | 212 | 212 | 208 | 212 | 215 | 207 | 95 | 212 |
DMU126 | 212 | 208 | 205 | 217 | 214 | 209 | 210 | 213 | 209 | 210 | 93 | 213 |
DMU150 | 213 | 214 | 211 | 209 | 215 | 197 | 215 | 208 | 218 | 209 | 91 | 214 |
DMU184 | 205 | 211 | 213 | 215 | 200 | 216 | 198 | 219 | 213 | 219 | 91 | 215 |
DMU175 | 217 | 209 | 218 | 218 | 199 | 215 | 209 | 206 | 212 | 212 | 85 | 216 |
DMU30 | 218 | 218 | 212 | 212 | 213 | 205 | 216 | 210 | 207 | 205 | 84 | 217 |
DMU73 | 219 | 217 | 214 | 206 | 211 | 200 | 217 | 216 | 203 | 216 | 81 | 218 |
DMU10 | 215 | 220 | 217 | 220 | 219 | 220 | 220 | 218 | 220 | 220 | 11 | 219 |
DMU35 | 220 | 219 | 220 | 219 | 220 | 219 | 219 | 220 | 217 | 218 | 9 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q. A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis. Mathematics 2024, 12, 2913. https://doi.org/10.3390/math12182913
Deng Q. A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis. Mathematics. 2024; 12(18):2913. https://doi.org/10.3390/math12182913
Chicago/Turabian StyleDeng, Qiang. 2024. "A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis" Mathematics 12, no. 18: 2913. https://doi.org/10.3390/math12182913
APA StyleDeng, Q. (2024). A Combined OCBA–AIC Method for Stochastic Variable Selection in Data Envelopment Analysis. Mathematics, 12(18), 2913. https://doi.org/10.3390/math12182913