On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (α, β)
Abstract
:1. Introduction
2. Preliminaries
3. Relation between the Levi–Civita Connection and GSM-Connection of Type
4. Curvature Tensor with Regard to GSM-Connection of Type
5. Some Results on LP-Kenmotsu Manifolds with Regard to GSM-Connection of Type
5.1. Locally Symmetric LP-Kenmotsu Manifold with Regard to
5.2. Ricci Semi-Symmetric LP-Kenmotsu Manifold with Regard to
5.3. -Ricci Symmetric LP-Kenmotsu Manifold with Regard to
- (i)
- M is an θ-Einstein manifold defined as in regard to the connection of type .
- (ii)
- M is a generalized θ-Einstein manifold given by in regard to the connection of type .
6. Projective Curvature Tensor on LP-Kenmotsu Manifold with Regard to GSM-Connection of Type
- (1)
- M is projectively flat with regard to GSM-connection of type with ,
- (2)
- M is projectively semi-symmetric with regard to GSM-connection of type with ,
- (3)
- M is φ-projectively flat with regard to GSM-connection of type with ,
- (4)
- The curvature tensor with regard to GSM-connection of type with of M is given by
7. Example of an LP-Kenmotsu Manifold with Regard to the Connection
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedmann, A.; Schouten, J.A. Uber die Geometric der halbsymmetrischen Ubertragung. Math. Z. 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Bartolotti, E. Sulla geometria della variata a connection affine. Ann. Mat. 1930, 4, 53–101. [Google Scholar]
- Hayden, H.A. Subspaces of space with torsion. Proc. Lond. Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
- Yano, K. On semi-symmetric metric connections, Revue Roumaine De Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
- Golab, S. On semi-symmetric and quarter-symmetric linear connection. Tensor 1975, 29, 249–254. [Google Scholar]
- Rastogi, S.C. On quarter-symmetric metric connection. CR Acad. Sci. Bulg. 1978, 31, 811–814. [Google Scholar]
- Prakasha, D.G. On φ-symmetric Kenmotsu manifolds with regard to quarter-symmetric metric connection. Int. Electron. J. Geom. 2011, 4, 88–96. [Google Scholar]
- Prakasha, D.G.; Vanli, A.T.; Bagewadi, C.S.; Patil, D.A. Some classes of Kenmotsu manifolds with regard to semi-symmetric metric connection. Acta Math. Sin. Engl. Ser. 2013, 29, 1311–1322. [Google Scholar] [CrossRef]
- Sular, S.; Ozgur, C.; De, U.C. Quarter-symmetric metric connection in a Kenmotsu manifold. SUT J. Math. 2008, 44, 297–306. [Google Scholar] [CrossRef]
- Tripathi, M.M. On a semi-symmetric metric connection in a Kenmotsu manifold. J. Pure Math. 1999, 16, 67–71. [Google Scholar]
- Alghamdi, M.A.; Bahadir, O. Some characterizations in Kenmotsu manifolds with a new connection. BSP Proc. 2020, 27, 1–16. [Google Scholar]
- Bahadir, O.; Choudhary, M.A.; Pandey, S. LP-Kenmotsu manifolds with generalized symmetric metric connection. Novi Sad J. Math. 2021, 51, 75–87. [Google Scholar] [CrossRef]
- Siddiqi, M.D.; Bahadir, O. θ-Ricci solitons on Kenmotsu manifol with generalized symmetric metric connection. Facta Univ. Math. Inform. 2020, 35, 295–310. [Google Scholar] [CrossRef]
- Matsumoto, K. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 1989, 12, 151–156. [Google Scholar]
- Sinha, B.B.; Sai Prasad, K.L. A class of almost para contact metric manifold. Bull. Calcutta Math. Soc. 1995, 87, 307–312. [Google Scholar]
- Haseeb, A.; Prasad, R. Certain results on Lorentzian Para-Kenmotsu manifolds. Bol. Soc. Parana. Matemática 2021, 39, 201–220. [Google Scholar] [CrossRef]
- Atceken, M. Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds. Korean J. Math. 2022, 30, 175–185. [Google Scholar]
- Unal, İ. Generic submanifolds of Lorentzian para Kenmotsu manifold. Karamanoğlu Mehmetbey Univ. Mühendislik Doğa Bilim. Derg. 2021, 3, 79–85. [Google Scholar]
- Dirik, S.; Sari, R. Contact Pseudo-Slant Submanifolds of Lorentzian Para Kenmotsu Manifold. JERAS 2023, 12, 2301–2306. [Google Scholar]
- Haseeb, A.; Almusawa, H. Some results on Lorentzian para-Kenmotsu manifolds admitting θ-Ricci solitons. Palest. J. Math. 2022, 11, 205–213. [Google Scholar]
- Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu manifolds Admitting η-Ricci solitons and spacetime. J. Math. 2022, 10, 6605127. [Google Scholar] [CrossRef]
- Prasad, R.; Haseeb, A.; Gautam, U.K. On φ-semisymmetric LP-Kenmotsu manifolds with a QSNM connection admitting Ricci solitons. Kragujev. J. Math. 2021, 45, 815–827. [Google Scholar] [CrossRef]
- Haseeb, A.; Bilal, M.; Chaubey, S.K.; Ahmadini, A.A.H. ζ-Conformally Flat LP-Kenmotsu Manifolds and Ricci—Yamabe Solitons. Mathematics 2023, 11, 212. [Google Scholar] [CrossRef]
- Khan, M.N.I.; De, U.C.; Velimirović, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Prasad, R.; Verma, A.; Yadav, V.S. Characterization of φ-symmetric Lorentzian para Kenmotsu manifolds, Facta Univ. Math. Inform. 2023, 38, 635–647. [Google Scholar]
- Haseeb, A.; Prasad, R. Some results on Lorentzian Para-Kenmotsu manifolds, Bulletin of the Transilvania University of Brosov Series III. Math. Comput. Sci. 2020, 13, 185–198. [Google Scholar]
- Cartan, E. Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. Fr. 1926, 54, 214–264. [Google Scholar] [CrossRef]
- Sinyukov, N.S. On geodesic mappings of Riemann spaces onto symmetric Riemann spaces. Dokl. Akad. Nauk USSR 1954, 98, 21–23. [Google Scholar]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M. Differential Geometry of Special Mappings; VUP: Olomouc, Czech Republic, 2019. [Google Scholar]
- Sabykanov, A.; Mikeš, J.; Peška, P. Recurrent equiaffine projective Euclidean spaces. Filomat 2019, 33, 1053–1058. [Google Scholar] [CrossRef]
- Takagi, T. An example of Riemannian manifold satisfying R(X,Y)R = 0 but not ∇R = 0. Tohoku Math. J. 1972, 24, 105–108. [Google Scholar] [CrossRef]
- Szabo, Z.I. Structure theorems on Riemannian spaces satisfying R(X,Y)R = 0, I. the local version. J. Differ. Geom. 1982, 17, 531–582. [Google Scholar] [CrossRef]
- Takahashi, T. Sasakian φ-symmetric space. Tohoku Math. J. 1977, 29, 91–113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakasha, D.G.; Bin Turki, N.; Veerabhadraswamy Deepika, M.; Ünal, İ. On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (α, β). Mathematics 2024, 12, 2915. https://doi.org/10.3390/math12182915
Prakasha DG, Bin Turki N, Veerabhadraswamy Deepika M, Ünal İ. On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (α, β). Mathematics. 2024; 12(18):2915. https://doi.org/10.3390/math12182915
Chicago/Turabian StylePrakasha, Doddabhadrappla Gowda, Nasser Bin Turki, Mathad Veerabhadraswamy Deepika, and İnan Ünal. 2024. "On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (α, β)" Mathematics 12, no. 18: 2915. https://doi.org/10.3390/math12182915
APA StylePrakasha, D. G., Bin Turki, N., Veerabhadraswamy Deepika, M., & Ünal, İ. (2024). On LP-Kenmotsu Manifold with Regard to Generalized Symmetric Metric Connection of Type (α, β). Mathematics, 12(18), 2915. https://doi.org/10.3390/math12182915