Magnetotelluric Forward Modeling Using a Non-Uniform Grid Finite Difference Method
Abstract
:1. Introduction
2. Control Equations and Boundary Conditions
2.1. Control Equations of the Magnetotelluric Field
2.2. Boundary Conditions
3. Finite Difference Discretization
3.1. Finite Difference Scheme Based on Non-Uniform Grids
3.2. Deriving the Difference Equations
3.3. Solving the Linear System
3.3.1. The BICGSTAB Algorithm
3.3.2. Incomplete LU Preconditioning Method
3.4. Calculation of Electromagnetic Response
4. Results and Discussion
4.1. Homogeneous Half-Space Model Modeling and Analysis
4.2. Layered Model Modeling and Analysis
4.3. Fault Structure Model Modeling and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- McLeod, J.; Ferguson, I.; Craven, J.; Roberts, B.; Giroux, B. Pre-injection magnetotelluric surveys at the Aquistore CO2 sequestration site, Estevan, Saskatchewan, Canada. Int. J. Greenh. Gas Control 2018, 74, 99–118. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, X.B.; Tang, J.; Cui, T.F.; Sun, X.Y.; Wang, P.J.; Liu, Z.Y. Three-dimensional modeling of magnetotelluric data from the Hefei-Suqian segment of the Tanlu Fault Zone, Eastern China. Chin. J. Geophys. 2022, 65, 1336–1353. (In Chinese) [Google Scholar]
- Heinson, G.; Didana, Y.; Soeffky, P.; Thiel, S.; Wise, T. The crustal geophysical signature of a world-class magmatic mineral system. Sci. Rep. 2018, 8, 10608. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.P.; Duan, J.M.; Michael, D.; Andrew, C.; Anthony, S.; Brodie, R.C.; Goodwin, J. Application of Multi-Scale Magnetotelluric Data to Mineral Exploration: An Example from the East Tennant Region, Northern Australia. Geophys. J. Int. 2021, 229, 1628–1645. [Google Scholar] [CrossRef]
- Niu, P.; Han, J.T.; Zeng, Z.F.; Hou, H.S.; Liu, L.J.; Ma, G.Q.; Guan, Y.W. Deep controlling factors of the geothermal field in the northern Songliao basin derived from magnetotelluric survey. Chin. J. Geophys. 2021, 64, 4060–4074. (In Chinese) [Google Scholar]
- Zhang, J.F.; Sun, N.Q.; Liu, Z.L.; Qi, Z.P. Electromagnetic methods in the detection of water hazards in coal mines: A review. Coal Geol. Explor. 2023, 51, 301–316. [Google Scholar]
- Wang, P.J.; Chen, X.B.; Zhang, Y.Y. Synthesizing magnetotelluric time series based on forward modeling. Front. Earth Sci. 2023, 11, 1086749. [Google Scholar] [CrossRef]
- Arun, S.; Rahul, D.; Pravin, K.G.; Israil, M. A MATLAB based 3D modeling and inversion code for MT data. Comput. Geosci. 2017, 104, 1–11. [Google Scholar]
- Batista, J.D.; Sampaio, E.E.S. Magnetotelluric inversion of one- and two-dimensional synthetic data based on hybrid genetic algorithms. Acta Geophys. 2019, 67, 1365–1377. [Google Scholar] [CrossRef]
- Gary, D.E.; Anna, K. Computational recipes for electromagnetic inverse problems. Geophys. J. Int. 2012, 189, 251–267. [Google Scholar]
- Avdeev, D.B. Three-dimensional electromagnetic modeling and inversion from theory to application. Surv. Geophys. 2005, 26, 767–799. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Shi, Y.L.; Liu, X.J.; He, Z.X.; Xu, L.G.; Mi, X.L.; Liu, J. Two-Dimensional Magnetotelluric Parallel-Constrained-Inversion Using Artificial-Fish-Swarm Algorithm. Magnetochemistry 2023, 9, 34. [Google Scholar] [CrossRef]
- Gallardo, G.E.U.; Ruiz, A.D. High order edge-based elements for 3D magnetotelluric modeling with unstructured meshes. Comput. Geosci. 2022, 158, 104971. [Google Scholar] [CrossRef]
- Reddy, I.K.; Rankin, D.; Phillips, R.J. Three-dimensional modelling in 569 magnetotelluric and magnetic variational sounding. Geophys. J. Int. 1977, 51, 313–325. [Google Scholar] [CrossRef]
- Klaus, S. Electromagnetic Modeling Using Adaptive Grids—Error Estimation and Geometry Representation. Surv. Geophys. 2023, 45, 227–314. [Google Scholar]
- Farquharson, C.; Miensopust, M. Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction. J. Appl. Geophys. 2011, 75, 699–710. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, C.; Liu, Y. 3-D DC resistivity modelling based on spectral element method with unstructured tetrahedral grids. Geophys. J. Int. 2020, 220, 1748–1761. [Google Scholar] [CrossRef]
- Weiss, M.; Kalscheuer, T.; Ren, Z. Spectral element method for 3-D controlled-source electromagnetic forward modelling using unstructured hexahedral meshes. Geophys. J. Int. 2022, 232, 1427–1454. [Google Scholar] [CrossRef]
- Tong, X.Z.; Sun, Y.; Zhang, B.Y. An efficient spectral element method for two-dimensional magnetotelluric modeling. Front. Earth Sci. 2023, 11, 1183150. [Google Scholar] [CrossRef]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Jahandari, H.; Bihlo, A. Forward modelling of geophysical electromagnetic data on unstructured grids using an adaptive mimetic finite-difference method. Comput. Geosci. 2021, 25, 1083–1104. [Google Scholar] [CrossRef]
- Wang, Y.G.; Jin, S.; Dong, H. Multi-level down-sampling scheme for accelerated solution in magnetotelluric forward modelling. J. Appl. Geophys. 2021, 192, 104384. [Google Scholar] [CrossRef]
- Zhang, M.; Farquharson, C.G.; Lin, T.T. 3-D forward modelling of controlled-source frequency-domain electromagnetic data using the meshless generalized finite-difference method. Geophys. J. Int. 2023, 235, 750–764. [Google Scholar] [CrossRef]
- Penz, S.; Chauris, H.; Donno, D.; Mehl, C. Resistivity modelling with topography. Geophys. J. Int. 2013, 194, 1486–1497. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.Y.; Yang, W.C.; Wei, W.B.; Fang, H.; Han, B.; Peng, R.H. A study on parallel computation for 3D magnetotelluric modeling using the staggered-grid finite difference method. Chin. J. Geophys. 2012, 55, 4036–4043. (In Chinese) [Google Scholar]
- Qing, L.; Li, X. Meshless analysis of fractional diffusion-wave equations by generalized finite difference method. Appl. Math. Lett. 2024, 157, 109204. [Google Scholar] [CrossRef]
- Hidayat, M.I.P. Meshless finite difference method with B-splines for numerical solution of coupled advection-diffusion-reaction problems. Int. J. Therm. Sci. 2021, 165, 106933. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, X.G. The application of a new mesh generation method for finite difference to MT 1D inversion. Geophys. Geochem. Explor. 2015, 3, 562–566+571. [Google Scholar]
- Xu, Y.; Liu, Y.; Deng, Z.J.; Zhang, M.T.; Zhang, G.B. 3D FDTD modeling of TEM based on non-uniform grid. Prog. Geophys. 2017, 32, 1279–1285. (In Chinese) [Google Scholar]
- Tong, X.Z.; Wu, S.Y.; Cheng, D.J. Modeling of one-dimensional magnetotelluric response using non-uniform grids finite difference method. Chin. J. Eng. Geophys. 2018, 15, 124–130. [Google Scholar]
- Singh, A.; Dehiya, R. An efficient EM modeling scheme for large 3-D models—A magnetotelluric case study. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Xiao, Q.B.; Zhao, G.Z. Comparison of magnetotelluric finite difference numerical solutions. Chin. J. Geophys. 2010, 53, 622–630. [Google Scholar]
- Higham, N.J. Gaussian elimination. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 230–238. [Google Scholar] [CrossRef]
- Le, K.Q.; Godoy-Rubio, R.; Bienstman, P.; Ronald Hadley, G. The complex Jacobi iterative method for three-dimensional wide-angle beam propagation. Opt. Express 2008, 16, 17021–17030. [Google Scholar] [CrossRef] [PubMed]
- Nazareth, J.L. Conjugate gradient method. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 348–353. [Google Scholar] [CrossRef]
- Han, N.; Nam, M.J.; Kim, H.J.; Song, Y.; Suh, J.H. A comparison of accuracy and computation time of three-dimensional magnetotelluric modelling algorithms. J. Geophys. Eng. 2009, 6, 136–145. [Google Scholar] [CrossRef]
- Li, G.; Zhang, L.; Hao, T. Performance of preconditioned iterative and multigrid solvers in solving the three-dimensional magnetotelluric modeling problem using the staggered finite-difference method: A comparative study. J. Geophys. Eng. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Van der Vorst, H.A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1992, 13, 631–644. [Google Scholar] [CrossRef]
- Malas, T.; Gürel, L. Incomplete LU preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering. SIAM J. Sci. Comput. 2007, 29, 1476–1494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Nie, F. Magnetotelluric Forward Modeling Using a Non-Uniform Grid Finite Difference Method. Mathematics 2024, 12, 2984. https://doi.org/10.3390/math12192984
Zhang H, Nie F. Magnetotelluric Forward Modeling Using a Non-Uniform Grid Finite Difference Method. Mathematics. 2024; 12(19):2984. https://doi.org/10.3390/math12192984
Chicago/Turabian StyleZhang, Hui, and Fajian Nie. 2024. "Magnetotelluric Forward Modeling Using a Non-Uniform Grid Finite Difference Method" Mathematics 12, no. 19: 2984. https://doi.org/10.3390/math12192984
APA StyleZhang, H., & Nie, F. (2024). Magnetotelluric Forward Modeling Using a Non-Uniform Grid Finite Difference Method. Mathematics, 12(19), 2984. https://doi.org/10.3390/math12192984