Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds
Abstract
:1. Introduction
2. Notes on Lorentzian Manifolds
3. Characterization of Lorentzian Manifolds Admitting -Connection with Parallel -Tensor
4. -Tensor on Lorentzian Manifolds with -Connection
- M is quasi-Einstein;
- M has a vanishing -tensor;
- M has a vanishing -tensor.
- The -tensor containing the unit-vector field ω is parallel along ω;
- The curvature transformation annihilates the -tensor.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yano, K.; Kon, M. Structures on Manifolds; Series in Pure Math; World Scientific: Singapore, 1985. [Google Scholar]
- Hayden, H.A. Subspace of a Space with Torsion. Proc. Am. Math. Soc. 1957, 34, 294–298. [Google Scholar]
- Pak, E. On the pseudo-Riemannian spaces. J. Korean Math. Soc. 1969, 6, 23–31. [Google Scholar]
- Yano, K. On semi-symmetric metric connections. Pures Appl. Rev. Roumaine Math. 1970, 15, 1579–1586. [Google Scholar]
- Chaubey, S.K.; Lee, J.; Yadav, S. Riemannian manifolds with a semi-symmetric metric P-connection. Korean Math. Soc. 2019, 56, 1113–1129. [Google Scholar]
- Chaubey, S.K.; Suh, Y.J.; De, U.C. Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection. Anal. Math. Phys. 2020, 10, 61. [Google Scholar] [CrossRef]
- Duggal, K.L. Almost Ricci solitons and physical applications. Int. Electron. J. Geom. 2017, 10, 1–10. [Google Scholar]
- Kumar, R.; Colney, L.; Shenawy, S.; Turki, N.B. Tangent bundles endowed with quarter-symmetric non-metric connection (QSNMC) in a Lorentzian Para-Sasakian manifold. Mathematics 2023, 11, 4163. [Google Scholar] [CrossRef]
- Kumar, R.; Colney, L.; Khan, M.N.I. Proposed theorems on the lifts of Kenmotsu manifolds admitting a non-symmetric non-metric connection (NSNMC) in the tangent bundle. Symmetry 2023, 15, 2037. [Google Scholar] [CrossRef]
- Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar] [CrossRef]
- Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A.; Saxena, M. Certain results on the lifts from an LP-Sasakian manifold to its tangent bundles associated with a quarter-symmetric metric connection. Symmetry 2023, 15, 1553. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
- Li, Y.; Aquib, M.; Khan, M.A.; Al-Dayel, I.; Masood, K. Analyzing the Ricci Tensor for Slant Submanifolds in Locally Metallic Product Space Forms with a Semi-Symmetric Metric Connection. Axioms 2024, 13, 454. [Google Scholar] [CrossRef]
- Li, Y.; Aquib, M.; Khan, M.A.; Al-Dayel, I.; Youssef, M.Z. Geometric Inequalities of Slant Submanifolds in Locally Metallic Product Space Forms. Axioms 2024, 13, 486. [Google Scholar] [CrossRef]
- De, K.; De, U.C.; Gezer, A. Perfect Fluid Spacetimes and k-Almost Yamabe Solitons. Turk. J. Math. 2023, 47, 1236–1246. [Google Scholar] [CrossRef]
- Li, Y.; Gezer, A.; Karakas, E. Exploring Conformal Soliton Structures in Tangent Bundles with Ricci-Quarter Symmetric Metric Connections. Mathematics 2024, 12, 2101. [Google Scholar] [CrossRef]
- Mihai, I.; Mohammed, M. Optimal inequalities for submanifolds in trans-Sasakian manifolds endowed with a semi-symmetric metric connection. Symmetry 2023, 15, 877. [Google Scholar] [CrossRef]
- Mihai, I.; Mihai, R.I. General Chen inequalities for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Mathematics 2022, 10, 3061. [Google Scholar] [CrossRef]
- Mihai, A.; Mihai, I. Curvature invariants for statistical submanifolds of Hessian manifolds of constant Hessian curvature. Mathematics 2018, 6, 44. [Google Scholar] [CrossRef]
- Canlı, D.; Şenyurt, S.; Kaya, F.E.; Grilli, L. The Pedal Curves Generated by Alternative Frame Vectors and Their Smarandache Curves. Symmetry 2024, 16, 1012. [Google Scholar] [CrossRef]
- Kaya, E.F.; Şenyurt, S. Curve-Surface Pairs on Embedded Surfaces and Involute D-Scroll of the Curve-Surface Pair in E3. Symmetry 2024, 16, 323. [Google Scholar] [CrossRef]
- Gür, M.; Şenyurt, S.; Grilli, L. The invariants of Dual Parallel equidistant ruled surfaces. Symmetry 2023, 15, 206. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E.; Toda, M. Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Math. 2024, 9, 18732–18745. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. Right Conoids Demonstrating a Time-like Axis within Minkowski Four-Dimensional Space. Mathematics 2024, 12, 2421. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Aziz, H.; Serry, H.; El-Adawy, F.; Saad, M. Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space. AIMS Math. 2024, 9, 25619–25635. [Google Scholar] [CrossRef]
- Gür, M. Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space. Filomat 2023, 37, 5735–5749. [Google Scholar] [CrossRef]
- De, K.; Khan, M.; De, U. Almost co-Kahler manifolds and (m,ρ)-quasi-Einstein solitons. Chaos Solitons Fractals 2023, 167, 113050. [Google Scholar] [CrossRef]
- Sardar, A.; De, U. Almost Schouten solitons and almost cosymplectic manifolds. J. Geom. 2023, 114, 13. [Google Scholar] [CrossRef]
- Li, Y.; Turki, N.; Deshmukh, S.; Belova, O. Euclidean hypersurfaces isometric to spheres. AIMS Math. 2024, 9, 28306–28319. [Google Scholar] [CrossRef]
- Bach, R. Zur Weylschen Relativitatstheorie und der Weylschen Erweiterung des Krummungstensorbegriffs. Math. Z. 1921, 9, 110–135. [Google Scholar] [CrossRef]
- Kuhnel, W.; Rademacher, H.B. Conformal vector fields on pseudo-Riemannian spaces. Differ. Geom. Appl. 1997, 7, 237–250. [Google Scholar] [CrossRef]
- Bourguignon, J.-P. Harmonic curvature for gravitational and yang mills fields. In Harmonic Maps; Springer: Berlin/Heidelberg, Germany, 1982; pp. 35–47. [Google Scholar]
- Chen, Q.; He, C. On bach flat warped product Einstein manifolds. Pac. J. Math. 2013, 265, 313–326. [Google Scholar] [CrossRef]
- Bergman, J.; Edgar, S.B.; Herberthson, M. The bach tensor and other divergence-free tensors. Int. J. Geom. Methods Mod. Phys. 2005, 2, 13–21. [Google Scholar] [CrossRef]
- Leistner, T.; Nurowski, P. Ambient metrics for n-dimensional pp-waves. Commun. Math. Phys. 2010, 296, 881–898. [Google Scholar] [CrossRef]
- Ghosh, A. Cotton tensor, Bach tensor and Kenmotsu manifolds. Afr. Mat. 2020, 31, 1193–1205. [Google Scholar] [CrossRef]
- Naik, D.M.; Venkatesha, V.; Kumara, H.A. Certain types of metrics on almost coKähler manifolds. Ann. Math. Quebec 2023, 47, 331–347. [Google Scholar] [CrossRef]
- Niell, B.O. Semi-Riemannian Geometry with Applications to Relativity; Academic Press, Inc.: New York, NY, USA, 1983. [Google Scholar]
- Mishra, R.S.; Pandey, S.N. Semi-symmetric metric connections in an almost contact manifold. Indian J. Pure Appl. Math. 1978, 9, 570–580. [Google Scholar]
- Khan, M.A.; Al-Dayel, I.; Chaubey, S.K. Semi-Symmetric Metric Connections and Homology of CR-Warped Product Submanifolds in a Complex Space Form Admitting a Concurrent Vector Field. Symmetry 2024, 16, 719. [Google Scholar] [CrossRef]
- Chaki, M.C.; Maity, R.K. On quasi einstein manifolds. Publ. Math. Debrecen. 2000, 57, 297–306. [Google Scholar] [CrossRef]
- Besse, A.L. Einstein Manifolds; Springer Science and Business Media: New York, NY, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Siddesha, M.S.; Kumara, H.A.; Praveena, M.M. Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds. Mathematics 2024, 12, 3130. https://doi.org/10.3390/math12193130
Li Y, Siddesha MS, Kumara HA, Praveena MM. Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds. Mathematics. 2024; 12(19):3130. https://doi.org/10.3390/math12193130
Chicago/Turabian StyleLi, Yanlin, M. S. Siddesha, H. Aruna Kumara, and M. M. Praveena. 2024. "Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds" Mathematics 12, no. 19: 3130. https://doi.org/10.3390/math12193130
APA StyleLi, Y., Siddesha, M. S., Kumara, H. A., & Praveena, M. M. (2024). Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds. Mathematics, 12(19), 3130. https://doi.org/10.3390/math12193130