Forecasting ETF Performance: A Comparative Study of Deep Learning Models and the Fama-French Three-Factor Model
Abstract
:1. Introduction
2. Research Method
2.1. Research Samples
2.2. Development of Artificial Intelligence
2.3. ANN
2.4. LSTM
2.5. GRU
2.6. CNN
2.7. Definitions of Input Variables
- (1)
- Dividend yield premium
- (2)
- Momentum factor
- (3)
- Short-term reversal factor
- (4)
- Long-term reversal factor
- (5)
- Profitability factor
- (6)
- Investment factor
2.8. Model Parameter Setting
- (1)
- Number of hidden layers
- (2)
- Number of neurons in the hidden layers
3. Empirical Results
Basic Descriptive Statistics
4. Conclusions
Research Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharpe, W.F. Capital asset prices: A theory of market equilibrium under conditions of risk. J. Financ. 1964, 19, 425–442. [Google Scholar]
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Ross, S.A. Options and efficiency. Q. J. Econ. 1976, 90, 75–89. [Google Scholar] [CrossRef]
- Banz, R.W. The relationship between return and market value of common stocks. J. Financ. Econ. 1981, 9, 3–18. [Google Scholar] [CrossRef]
- Ball, R. Anomalies in relationships between securities’ yields and yield-surrogates. J. Financ. Econ. 1978, 6, 103–126. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. The cross-section of expected stock returns. J. Financ. 1992, 47, 427–465. [Google Scholar]
- Fama, E.F.; French, K.R. Dissecting anomalies. J. Financ. 2008, 63, 1653–1678. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A five-factor asset pricing model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef]
- Foye, J. A comprehensive test of the Fama-French five-factor model in emerging markets. Emerg. Mark. Rev. 2018, 37, 199–222. [Google Scholar] [CrossRef]
- Londoño, C.; Lopera, M.; Restrepo, S. Teoría de precios de arbitraje. Evidencia empírica para colombia a través de redes neuronales. Rev. Econ. Rosario 2010, 13, 41–73. [Google Scholar]
- Jafari, S.M.; Misaghi, F.J.; Ahmadvand, M. A comparison between CAPM, Fama and French models and artificial neural networks in predicting the iranian stock market. J. Econ. Bus. Res. 2013, 4, 53–60. [Google Scholar]
- Londoño, C.; Cuan, Y. Modelos de precios de los activos: Un ejercicio comparativo basado en redes neuronales aplicado al mercado de valores colombiano. Lect. Econ. 2011, 75, 59–87. [Google Scholar] [CrossRef]
- Diallo, B.; Bagudu, A.; Zhang, Q. A Machine Learning Approach to the Fama-French Three- and Five-Factor Models 2019. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3440840 (accessed on 1 September 2024).
- Cao, Q.; Leggio, K.B.; Schniederjans, M.J. A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market. Comput. Oper. Res. 2005, 32, 2499–2512. [Google Scholar] [CrossRef]
- Ayub, U.; Jan, M.N.; Afridi, M.A.; Jadoon, I.A. Capital asset pricing model and artificial neural networks: A case of Pakistan’s equity market. Fed. Hist. 2020, 40, 673–688. [Google Scholar]
- Jan, M.N.; Ayub, U. Do the FAMA and French Five-Factor model forecast well using ANN? J. Bus. Econ. Manag. 2019, 20, 168–191. [Google Scholar]
- Ap Gwilym, O. Forecasting volatility for options pricing for the UK stock market. J. Financ. Manag. Anal. 2001, 14, 55. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Multifactor explanations of asset pricing anomalies. J. Financ. 1996, 51, 55–84. [Google Scholar] [CrossRef]
- Versace, M.; Bhatt, R.; Hinds, O.; Shiffer, M. Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks. Expert Syst. Appl. 2004, 27, 417–425. [Google Scholar] [CrossRef]
- Chalvatzis, C.; Hristu-Varsakelis, D. High-performance stock index trading via neural networks and trees. Appl. Soft Comput. 2020, 96, 106567. [Google Scholar] [CrossRef]
- Xie, Z.; Lin, X.; Zhong, Y.; Chen, Q. Research on Gold ETF Forecasting Based on LSTM. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Xiamen, China, 16–18 December 2019; pp. 1346–1351. [Google Scholar]
- Day, M.Y.; Lin, J.T. Artificial intelligence for ETF market prediction and portfolio optimization. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Vancouver, BC, Canada, 27–30 August 2019; pp. 1026–1033. [Google Scholar]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 2006, 27, 12–14. [Google Scholar]
- LeBaron, B.; Arthur, W.B.; Palmer, R. Time series properties of an artificial stock market. J. Econ. Dyn. Control 1999, 23, 1487–1516. [Google Scholar] [CrossRef]
- Holland, J.H.; Reitman, J.S. Cognitive systems based on adaptive algorithms. ACM SIGART Bull. 1977, 63, 48–49. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [PubMed]
- Chatzis, S.P.; Siakoulis, V.; Petropoulos, A.; Stavroulakis, E.; Vlachogiannakis, N. Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert Syst. Appl. 2018, 112, 353–371. [Google Scholar] [CrossRef]
- Becerra-Vicario, R.; Alaminos, D.; Aranda, E.; Fernández-Gámez, M.A. Deep recurrent convolutional neural network for bankruptcy prediction: A case of the restaurant industry. Sustainability 2020, 12, 5180. [Google Scholar] [CrossRef]
- Du Jardin, P. Forecasting bankruptcy using biclustering and neural network-based ensembles. Ann. Oper. Res. 2019, 299, 531–566. [Google Scholar] [CrossRef]
- Ballestra, L.V.; Guizzardi, A.; Palladini, F. Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators. Int. J. Forecast. 2019, 35, 1250–1262. [Google Scholar] [CrossRef]
- Edet, S. Recurrent Neural Networks in Forecasting S&P 500 Index. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3001046 (accessed on 12 July 2017).
- Lee, J.; Kang, J. Effectively training neural networks for stock index prediction: Predicting the S&P 500 index without using its index data. PLoS ONE 2020, 15, e0230635. [Google Scholar]
- Arévalo, A.; Niño, J.; Hernández, G.; Sandoval, J. High-frequency trading strategy based on deep neural networks. In International Conference on Intelligent Computing; Springer: Cham, Switzerland, 2016; pp. 424–436. [Google Scholar]
- Sang, C.; Di Pierro, M. Improving trading technical analysis with tensorflow long short-term memory (lstm) neural network. J. Financ. Data Sci. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Fister, D.; Mun, J.C.; Jagrič, V.; Jagrič, T. Deep learning for stock market trading: A superior trading strategy. Neural Netw. World 2019, 29, 151–171. [Google Scholar] [CrossRef]
- Widiputra, H.; Mailangkay, A.; Gautama, E. Multivariate CNN-LSTM Model for Multiple Parallel Financial Time-Series Prediction. Complexity 2021, 2021, 9903518. [Google Scholar] [CrossRef]
- Nelson, D.M.; Pereira, A.C.; de Oliveira, R.A. Stock market’s price movement prediction with LSTM neural networks. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1419–1426. [Google Scholar]
- Chen, S.; Ge, L. Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction. Quant. Financ. 2019, 19, 1507–1515. [Google Scholar] [CrossRef]
- Faustryjak, D.; Jackowska-Strumiłło, L.; Majchrowicz, M. Forward forecast of stock prices using LSTM neural networks with statistical analysis of published messages. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnouście, Poland, 9–12 May 2018; pp. 288–292. [Google Scholar]
- Roondiwala, M.; Patel, H.; Varma, S. Predicting stock prices using LSTM. Int. J. Sci. Res. 2017, 6, 1754–1756. [Google Scholar]
- Shao, X.; Ma, D.; Liu, Y.; Yin, Q. Short-term forecast of stock price of multi-branch LSTM based on K-means. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 1546–1551. [Google Scholar]
- Kim, H.Y.; Won, C.H. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Syst. Appl. 2018, 103, 25–37. [Google Scholar] [CrossRef]
- Damrongsakmethee, T.; Neagoe, V. Stock Market Prediction Using a Deep Learning Approach. In Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25–27 June 2020; pp. 1–6. [Google Scholar]
- Althelaya, K.; Mohammed, S.; El-Alfy, E. Combining Deep Learning and Multiresolution Analysis for Stock Market Forecasting. IEEE Access 2021, 9, 13099–13111. [Google Scholar] [CrossRef]
- Hochreiter, S. Untersuchungen zu dynamischen neuronalen netzen. Diploma Tech. Univ. München 1991, 91, 1–70. [Google Scholar]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Samarawickrama, A.J.P.; Fernando, T.G.I. A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; pp. 1–6. [Google Scholar]
- Shahi, T.B.; Shrestha, A.; Neupane, A.; Guo, W. Stock price forecasting with deep learning: A comparative study. Mathematics 2020, 8, 1441. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, J.; Zhang, L.; Liu, C. An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Phys. A Stat. Mech. Its Appl. 2020, 541, 1–16. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1441. [Google Scholar]
- Hosaka, T. Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Syst. Appl. 2019, 117, 287–299. [Google Scholar] [CrossRef]
- Neagoe, V.E.; Ciotec, A.D.; Cucu, G.S. Deep convolutional neural networks versus multilayer perceptron for financial prediction. In Proceedings of the 2018 International Conference on Communications (COMM), Bucharest, Romania, 14–16 June 2018; pp. 201–206. [Google Scholar]
- Sulistio, B.; Warnars, H.L.H.S.; Gaol, F.L.; Soewito, B. Energy sector stock price prediction using the CNN, GRU & LSTM hybrid algorithm. In Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering, Jakarta, Indonesia, 16 February 2023; pp. 178–182. [Google Scholar]
- Gunduz, H.; Yaslan, Y.; Cataltepe, Z. Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations. Knowl.-Based Syst. 2017, 137, 138–148. [Google Scholar] [CrossRef]
- Gudelek, M.U.; Boluk, S.A.; Ozbayoglu, A.M. A deep learning based stock trading model with 2-D CNN trend detection. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8. [Google Scholar]
- Hung, C.C.; Chen, Y.J.; Guo, S.J.; Hsu, F.C. Predicting the price movement from candlestick charts: A CNN-based approach. Int. J. Ad Hoc Ubiquitous Comput. 2020, 34, 111–120. [Google Scholar] [CrossRef]
- Guo, S.J.; Hsu, F.C.; Hung, C.C. Deep candlestick predictor: A framework toward forecasting the price movement from candlestick charts. In Proceedings of the 2018 9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Taipei, Taiwan, 26–28 December 2018; pp. 219–226. [Google Scholar]
- Song, H.; Choi, H. Forecasting stock market indices using the recurrent neural network based hybrid models: CNN-LSTM, GRU-CNN, and ensemble models. Appl. Sci. 2023, 13, 4644. [Google Scholar] [CrossRef]
- Kao, I.C. The Forecast Performance of ETF: Comparison of Deep Learning and Fama-French Three Factor Model. Master’s Thesis, Chinese Culture University, Taiwan, China, 2021. [Google Scholar]
- Jearanaitanakij, K.; Passaya, B. Predicting short trend of stocks by using convolutional neural network and candlestick patterns. In Proceedings of the 2019 4th International Conference on Information Technology (InCIT), Bangkok, Thailand, 24-25 October 2019; pp. 159–162. [Google Scholar]
- Dow, C.H. Scientific Stock Speculation; Magazine of Wall Street, Windsor Books: New York, NY, USA, 1920. [Google Scholar]
- Cochrane, J.H. Where is the market going? Uncertain facts and novel theories. Econ. Perspect. 1997, 21, 3–37. [Google Scholar]
- Fama, E.F.; French, K.R. The value premium and the CAPM. J. Financ. 2006, 61, 2163–2185. [Google Scholar] [CrossRef]
- Hossain, M.A.; Karim, R.; THulasiram, R.; Bruce, N.D.; Wang, Y. Hybrid deep learning model for stock price prediction. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1837–1844. [Google Scholar]
Code | 0050 | 0051 | 0053 | 0054 | 0055 | 0056 |
Sample Size | 2465 | 2465 | 2465 | 2465 | 2465 | 2465 |
Mean | 0.000389 | 0.000269 | 0.000369 | 0.000238 | 0.000338 | 0.000312 |
Standard Deviation | 0.009518 | 0.011456 | 0.010478 | 0.011235 | 0.010809 | 0.007821 |
Minimum | −0.07027 | −0.085498 | −0.069711 | −0.07629 | −0.062885 | −0.065148 |
Maximum | 0.04851 | 0.099997 | 0.044408 | 0.06931 | 0.069599 | 0.054395 |
Variable | CAPM Variables | Three-Factor Variables | Five-Factor Variables | |||
---|---|---|---|---|---|---|
Method | Linear (Regression) | Non-Linear (ANN) | Linear (Regression) | Non-Linear (ANN) | Linear (Regression) | Non-Linear (ANN) |
2015 | 0.013794 | 0.005101 † | 0.013764 | 0.004862 † | 0.013751 | 0.004921 † |
2016 | 0.011380 | 0.004753 † | 0.011332 | 0.004620 † | 0.011277 | 0.004670 † |
2017 | 0.010415 | 0.004199 † | 0.010452 | 0.004113 † | 0.010443 | 0.004120 † |
2018 | 0.010744 | 0.004771 † | 0.010731 | 0.004577 † | 0.010729 | 0.004613 † |
2019 | 0.010287 | 0.003863 † | 0.010266 | 0.003715 † | 0.010283 | 0.003775 † |
Balance | 0.011324 | 0.004537 † | 0.011309 | 0.004378 † | 0.011297 | 0.004420 † |
Variable | CAPM Variables | Three-Factor Variables | Five-Factor Variables | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | ANN | LSTM | GRU | ANN | LSTM | GRU | ANN | LSTM | GRU |
2015 | 0.005101 | 0.005024 | 0.005061 | 0.004862 | 0.004794 † | 0.004926 | 0.004921 | 0.004902 | 0.005260 |
2016 | 0.004753 | 0.004734 | 0.004679 | 0.004620 | 0.004591 | 0.004563 † | 0.004670 | 0.004647 | 0.004654 |
2017 | 0.004199 | 0.004128 | 0.004134 | 0.004113 | 0.004083 † | 0.004097 | 0.004120 | 0.004134 | 0.004151 |
2018 | 0.004771 | 0.004743 | 0.004807 | 0.004577 † | 0.004603 | 0.004688 | 0.004613 | 0.004670 | 0.004832 |
2019 | 0.003863 | 0.003840 | 0.003732 | 0.003715 | 0.003660 | 0.003565 † | 0.003775 | 0.003728 | 0.003651 |
Balance | 0.004537 | 0.004494 | 0.004482 | 0.004378 | 0.004346 † | 0.004368 | 0.004420 | 0.004416 | 0.004510 |
Variables | 2015 | 2016 | 2017 | 2018 | 2019 | Balance |
---|---|---|---|---|---|---|
3 Factor Variables | 0.004794 † | 0.004591 | 0.004083 | 0.004603 † | 0.003660 | 0.004346 † |
3 Factor Variables + Momentum Factor | 0.004808 | 0.004605 | 0.004047 † | 0.004643 | 0.003686 | 0.004358 |
3 Factor Variables + Investment Factor | 0.004858 | 0.004598 | 0.004057 | 0.004636 | 0.003731 | 0.004376 |
3 Factor Variables + Profitability Factor | 0.004873 | 0.004649 | 0.004106 | 0.004627 | 0.003682 | 0.004388 |
3 Factor Variables + Dividend Yield Factor | 0.004840 | 0.004611 | 0.004091 | 0.004791 | 0.003712 | 0.004409 |
3 Factor Variables + Long-Term Reversal | 0.004872 | 0.004627 | 0.004072 | 0.004611 | 0.003663 | 0.004369 |
3 Factor Variables + Short-Term Reversal | 0.004825 | 0.004582 † | 0.004060 | 0.004635 | 0.003633 † | 0.004347 |
LSTM | Stacked LSTM | GRU | Stacked GRU | CNN | CNN-LSTM | CNN-GRU | |
---|---|---|---|---|---|---|---|
2015 | 0.004794 † | 0.004854 | 0.004926 | 0.004837 | 0.007720 | 0.007727 | 0.007751 |
2016 | 0.004591 | 0.004560 † | 0.004563 | 0.004566 | 0.007571 | 0.007555 | 0.007777 |
2017 | 0.004083 † | 0.004122 | 0.004097 | 0.004104 | 0.005835 | 0.005431 | 0.005582 |
2018 | 0.004603 † | 0.004698 | 0.004688 | 0.004642 | 0.007497 | 0.007438 | 0.007515 |
2019 | 0.003660 | 0.003586 | 0.003565 † | 0.003620 | 0.005947 | 0.006052 | 0.008148 |
Balance | 0.004346 † | 0.004364 | 0.004368 | 0.004353 | 0.006914 | 0.006841 | 0.007355 |
ANN | LSTM | Stacked LSTM | GRU | Stacked GRU | CNN | CNN-LSTM | CNN-GRU | |
---|---|---|---|---|---|---|---|---|
CAPM Variables | 0.004537 | 0.004494 | 0.004482 | 0.004482 | 0.004480 | 0.007044 | 0.006883 | 0.006859 1 |
3 Factor Variables | 0.004378 3 | 0.004346 1 | 0.004364 1 | 0.004368 1 | 0.004353 1 | 0.006914 | 0.006841 1 | 0.007355 |
5 Factor Variables | 0.004420 | 0.004416 | 0.004463 | 0.004510 | 0.004441 | 0.006870 2 | 0.007020 | 0.007203 |
3 Factor Variables + Momentum Factor | 0.004372 2 | 0.0043583 | 0.004418 | 0.004464 | 0.004382 | 0.007107 | 0.006869 2 | 0.006914 3 |
3 Factor Variables + Investment Factor | 0.004380 | 0.004376 | 0.004417 | 0.004448 | 0.004390 | 0.006936 | 0.006886 3 | 0.007162 |
3 Factor Variables + Profitability Factor | 0.004393 | 0.004387 | 0.004410 | 0.004458 | 0.004383 | 0.006907 3 | 0.006894 | 0.006943 |
3 Factor Variables + Dividend Factor | 0.004432 | 0.004409 | 0.004464 | 0.004468 | 0.004420 | 0.007025 | 0.006869 2 | 0.006878 2 |
3 Factor Variables + Long-Term Reversal | 0.004394 | 0.004369 | 0.004367 2 | 0.004395 2 | 0.004365 2 | 0.006859 1 | 0.006910 | 0.007056 |
3 Factor Variables + Short-Term Reversal | 0.004365 1 | 0.004347 2 | 0.004386 3 | 0.004410 3 | 0.004373 3 | 0.006920 | 0.007016 | 0.006968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, K.-H.; Wang, Y.-H.; Kao, I.-C.; Lai, F.-M. Forecasting ETF Performance: A Comparative Study of Deep Learning Models and the Fama-French Three-Factor Model. Mathematics 2024, 12, 3158. https://doi.org/10.3390/math12193158
Shih K-H, Wang Y-H, Kao I-C, Lai F-M. Forecasting ETF Performance: A Comparative Study of Deep Learning Models and the Fama-French Three-Factor Model. Mathematics. 2024; 12(19):3158. https://doi.org/10.3390/math12193158
Chicago/Turabian StyleShih, Kuang-Hsun, Yi-Hsien Wang, I-Chen Kao, and Fu-Ming Lai. 2024. "Forecasting ETF Performance: A Comparative Study of Deep Learning Models and the Fama-French Three-Factor Model" Mathematics 12, no. 19: 3158. https://doi.org/10.3390/math12193158
APA StyleShih, K.-H., Wang, Y.-H., Kao, I.-C., & Lai, F.-M. (2024). Forecasting ETF Performance: A Comparative Study of Deep Learning Models and the Fama-French Three-Factor Model. Mathematics, 12(19), 3158. https://doi.org/10.3390/math12193158