Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle
Abstract
:1. Introduction
2. Preliminaries
2.1. Vertical and Complete Lifts
2.2. Statistical Manifold
2.3. Sasakian Statistical Manifolds
3. Statistical Manifold and Sasakian Statistical Manifolds in the Tangent Bundle
4. Semi-Symmetric Metric Connection in the Tangent Bundle
5. Curvature Tensor of Semi-Symmetric Metric Connection on Statistical Manifolds in the Tangent Bundle
- 1.
- The relation between the lifts of the Riemannian curvature tensor of SSMC and the Riemannian curvature tensor of torsion-free connection in the tangent bundle is given by Equation (65).
- 2.
- The relation between the lifts of the Riemannian curvature tensor of SSMC and the Riemannian curvature tensor of dual connection in the tangent bundle is given by Equation (68).
- (i)
- .
- (ii)
- .
- (iii)
- .
6. Curvature Tensor of Semi-Symmetric Metric Connection on Sasakian Statistical Manifolds in The Tangent Bundle
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- .
6.1. Ricci Tensor Associated with Semi-Symmetric Metric Connection of Sasakian Statistical Manifolds in the Tangent Bundle
6.2. Scalar Curvature Associated with Semi-Symmetric Metric Connection of Sasakian Statistical Manifolds in the Tangent Bundle
- 1.
- The relation between the scalar curvature of the SSMC and the scalar curvature of the torsion-free connection in the tangent bundle is given by Equation (85).
- 2.
- The relation between the scalar curvature of the SSMC and the scalar curvature of the dual connection in the tangent bundle is given by Equation (86).
7. Example
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, A.; Schouten, J.A. Uber die Geometrie der halbsymmetrischen Ubertragungen. Math. Zeitschr. 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Hayden, H.A. sub-spaces of a space with torsion. Proc. Lond. Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
- Yano, K. On semi-symmetric metric connections. Rev. Roum. Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
- Amari, S. Differential-Geometrical Methods in Statistics; Springer: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Furuhata, H. Hypersurface in statistical manifolds. Differ. Geom. Appl. 2009, 27, 420–429. [Google Scholar] [CrossRef]
- Furuhata, H.; Hasegawa, I.; Okuyama, Y.; Sato, K.; Shahid, M. Sasakian statistical manifolds. J. Geom. Phys. 2017, 117, 179–186. [Google Scholar] [CrossRef]
- Furuhata, H.; Hasegawa, I.; Okuyama, Y.; Sato, K. Kenmotsu statistical manifolds and warped product. J. Geom. 2017, 108, 1175–1191. [Google Scholar] [CrossRef]
- Kurose, T. Geometry of Statistical Manifolds in Mathematics in the 21st Century; Nihon-Hyouron-Sha: Tokyo, Japan, 2004. [Google Scholar]
- Kazan, S.; Kazan, A. Sasakian statistical manifolds with semi-symmetric metric connection. Univers. J. Math. Appl. 2018, 1, 226–232. [Google Scholar] [CrossRef]
- Bagher, M.; Balgeshir, K.; Salahvarzi, S. Curvature of semi-symmetric metric connections on statistical manifolds. Commun. Korean Math. Soc. 2021, 36, 149–164. [Google Scholar] [CrossRef]
- Yildirim, M. Semi-symmetric non-metric connections on statistical manifolds. J. Geom. Phys. 2022, 176, 104505. [Google Scholar] [CrossRef]
- Yano, K.; Kobayashi, S. Prolongations of tensor fields and connections to tangent bundles I general theory. J. Math. Soc. Jpn. 1966, 18, 194–210. [Google Scholar] [CrossRef]
- Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Marcel Dekker, Inc.: New York, NY, USA, 1973; Available online: https://www.worldcat.org/title/713986 (accessed on 1 December 2023).
- Tani, M. Prolongations of hypersurfaces to tangent bundles. Kodai Math. Semin. Rep. 1969, 21, 85–96. [Google Scholar] [CrossRef]
- Pandey, P.; Chaturvedi, B.B. On a Kaehler manifold equipped with lift of quarter symmetric non-metric connection. Facta Univ. Ser. Math. Inform. 2018, 33, 539–546. [Google Scholar]
- Kumar, R.; Colney, L.; Khan, M.N.I. Proposed theorems on the lifts of Kenmotsu manifolds admitting a non-symmetric non-metric connection (NSNMC) in the tangent bundle. Symmetry 2023, 15, 2037. [Google Scholar] [CrossRef]
- Kumar, R.; Colney, L.; Shenawy, S.; Turki, N.B. Tangent bundles endowed with quarter-symmetric non-metric connection (QSNMC) in a Lorentzian Para-Sasakian manifold. Mathematics 2023, 11, 4163. [Google Scholar] [CrossRef]
- Khan, M.N.I. Complete lifts of a semi-symmetric metric P-connection on a Riemannian manifold to its tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 909–916. Available online: http://ijmcs.future-in-tech.net/17.2/R-MohammadNazrulIslamKhan.pdf (accessed on 1 December 2023).
- Khan, M.N.I. Submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric non-metric connection in the tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 265–275. Available online: http://ijmcs.future-in-tech.net/17.1/R-MohammadKhan.pdf (accessed on 1 December 2023).
- Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar]
- Khan, M.N.I.; Bahadur, O. Tangent bundles of LP-Sasakian manifold endowed with generalized symmetric metric connection. Facta Univ. Ser. Math. Inform. 2023, 38, 125–139. [Google Scholar]
- Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A.; Saxena, M. Certain results on the lifts from an LP-Sasakian manifold to its tangent bundles associated with a quarter-symmetric metric connection. Symmetry 2023, 15, 1553. [Google Scholar] [CrossRef]
- Kumar, R.; Colney, L.; Khan, M.N.I. Lifts of a semi-symmetric non-metric connection from statistical manifolds to tangent bundle. Results Nonlinear Anal. 2023, 6, 50–65. [Google Scholar]
- Blair, D.E. Contact manifolds in Riemannian geometry. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509. [Google Scholar] [CrossRef]
- Noguchi, M. Geometry of statistical manifolds, Differential. Geom. Appl. 1992, 2, 197–222. Available online: https://core.ac.uk/download/pdf/81988665.pdf (accessed on 1 December 2023). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Shenawy, S.; Turki, N.B.; Colney, L.; De, U.C. Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle. Mathematics 2024, 12, 226. https://doi.org/10.3390/math12020226
Kumar R, Shenawy S, Turki NB, Colney L, De UC. Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle. Mathematics. 2024; 12(2):226. https://doi.org/10.3390/math12020226
Chicago/Turabian StyleKumar, Rajesh, Sameh Shenawy, Nasser Bin Turki, Lalnunenga Colney, and Uday Chand De. 2024. "Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle" Mathematics 12, no. 2: 226. https://doi.org/10.3390/math12020226
APA StyleKumar, R., Shenawy, S., Turki, N. B., Colney, L., & De, U. C. (2024). Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle. Mathematics, 12(2), 226. https://doi.org/10.3390/math12020226