A New Perspective on Moran’s Coefficient: Revisited
Abstract
:1. Introduction
Some of the Notations
2. Preliminaries
3. Brief Review of a Closely Related Study
4. Main Results
- (i)
- (ii)
- Proposition 1(b) implies that the eigenvectors, , are in order of spatial autocorrelation. Accordingly, for example, if is a monotonically decreasing sequence, then is likely to be positive. Of course, from Proposition 1(c), if , then , even if is a monotonically decreasing sequence.
- (iii)
- From Lemma 1, it immediately follows thatWe provide a more direct proof of (39) in Appendix A.5.
- (iv)
- The MATLAB/GNU Octave and R user-defined functions to compute (psi2) are provided in Appendix B.
- (i)
- If , then the interval given by reduces to a singleton. For example, as stated, if , then
- (ii)
- Given (31), Corollary 1 is its equivalent.
- (iii)
- The MATLAB/GNU Octave and R user-defined functions to compute the bounds of Moran’s coefficient (MoranIbounds) are provided in Appendix B.
5. Additional Results
- (i)
- The candidates for are numerous. One of them is the following matrix:where for . Here,is the matrix used for the discrete cosine transform ([33] and [34]). The following matrix is another candidate:where . (The use of is inspired by [32]). Here,is a Helmert orthogonal matrix ([35]).
- (ii)
- The MATLAB/GNU Octave and R user-defined functions to compute and (Q2P2) and (Emat) are provided in Appendix B.
6. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proofs
Appendix A.1. Proof of (19)
Appendix A.2. Proof of (21)
Appendix A.3. Proof of (30)
Appendix A.4. Proof of Lemma 1
Appendix A.5. Proof of (39)
Appendix A.6. Proof of Proposition 2
Appendix B. User-Defined Functions
Appendix B.1. MATLAB/GNU Octave Functions
1 function [Psi2]= psi2 (x,W) 2 [Q2,P2]=Q2P2(W); 3 c=(P2’∗x).^2; 4 Psi2 =c/sum(c); 5 end 1 function [Ilb,Iub]= MoranIbounds(W) 2 W=(W+W’)/2; n=size(W,1); m=sum(sum(W)); 3 [Q2,P2]= Q2P2(W); 4 Iub =(n/m)∗Q2 (1,1); Ilb =(n/m)∗Q2(n-1,n-1); 5 end 1 function [Q2,P2]= Q2P2(W) 2 W=(W+W’)/2; n=size(W,1); 3 G= Emat(n); G2=G(:,2:n); A=G2’∗W∗G2; 4 [X,L]= eig((A+A’)/2); 5 [l,ind]= sort(diag (L),’descend’); 6 Q2= diag(l); Xi=X(:,ind); 7 P2=G2∗Xi; 8 end 1 function [E]= Emat (n) 2 E=zeros(n,n); 3 E(:,1)= ones (n,1)/ sqrt(n); 4 for i=1:n 5 for j=2:n 6 E(i,j)= sqrt(2/n)∗cos((j-1)∗(i-0.5)∗pi/n); 7 end 8 end 9 end
Appendix B.2. R Functions
1 psi2=function(x,W){ 2 Q2P2_result=Q2P2(W) 3 c=(t(Q2P2_result$P2)%∗%x)^2 4 Psi2=c/sum(c) 5 return( Psi2 ) 6 } 1 MoranIbounds=function(W){ 2 W=(W+t(W))/2; n=dim(W)[1]; m=sum(W) 3 Q2P2_result=Q2P2(W); Q2=Q2P2_result$Q2 ; P2=Q2P2_result$P2 4 Iub=(n/m)∗Q2[1 ,1]; Ilb=(n/m)∗Q2[n-1,n-1] 5 return(list(Ilb=Ilb ,Iub= Iub)) 6 } 1 Q2P2=function(W){ 2 W=(W+t(W))/2; n=nrow(W) 3 G=Emat(n); G2=G[,2:n]; A=t(G2)%∗%W%∗%G2 4 eig_result=eigen((A+t(A))/2) 5 l=eig_result$values; ind=order(l, decreasing= TRUE) 6 Q2= diag(l[ind]); Xi=eig_result$vectors[,ind] 7 P2=G2%∗%Xi 8 return (list (Q2=Q2,P2=P2)) 9 } 1 Emat=function (n){ 2 E=matrix(0,n,n) 3 E[,1]=rep (1/sqrt(n),n) 4 for (i in 1:n){ 5 for (j in 2:n){ 6 E[i,j]= sqrt(2/n)∗cos((j-1)∗(i-0.5)∗pi/n) 7 } 8 } 9 return (E) 10 }
References
- Getis, A. A history of the concept of spatial autocorrelation: A geographer’s perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Moraga, P. Spatial Statistics for Data Science: Theory and Practice with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023. [Google Scholar]
- Griffith, D.A. Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data. Can. Geogr. 1996, 40, 351–367. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Getis, A.; Griffith, D.A. Comparative spatial filtering in regression analysis. Geogr. Anal. 2002, 34, 130–140. [Google Scholar] [CrossRef]
- Tiefelsdorf, M.; Griffith, D.A. Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environ. Plan. 2007, 39, 1017–1274. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015, 17, 311–331. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Eigenvector spatial filtering for large data sets: Fixed and random effects approaches. Geogr. Anal. 2019, 51, 23–49. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spat. Stat. 2019, 30, 39–64. [Google Scholar] [CrossRef]
- Murakami, D.; Yoshida, T.; Seya, H.; Griffith, D.A.; Yamagata, Y. A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spat. Stat. 2017, 19, 68–89. [Google Scholar] [CrossRef]
- Seya, H.; Murakami, D.; Tsutsumi, M.; Yamagata, Y. Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr. Anal. 2015, 47, 284–299. [Google Scholar] [CrossRef]
- Nishi, H.; Asami, Y.; Baba, H.; Shimizu, C. Scalable spatiotemporal regression model based on Moran’s eigenvectors. Int. J. Geogr. Inf. Sci. 2023, 37, 162–188. [Google Scholar] [CrossRef]
- Dray, S. A new perspective about Moran’s coefficient: Spatial autocorrelation as a linear regression problem. Geogr. Anal. 2011, 43, 127–141. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. The problem of spatial autocorrelation. In Studies in Regional Science; Scott, A.J., Ed.; Pion: London, UK, 1969; pp. 25–55. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial autocorrelation: A review of existing and new measures with applications. Econ. Geogr. 1970, 46, 269–292. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Li, H.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for spatial dependence based on the spatial autoregressive model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Yamada, H. A unified perspective on some autocorrelation measures in different fields: A note. Open Math. 2023, 21, 20220574. [Google Scholar] [CrossRef]
- De Jong, P.; Sprenger, C.; van Veen, F. On extreme values of Moran’s I and Geary’s c. Geogr. Anal. 1984, 16, 17–24. [Google Scholar] [CrossRef]
- Anderson, R.L. Distribution of the serial correlation coefficient. Ann. Math. Stat. 1942, 13, 1–13. [Google Scholar] [CrossRef]
- Orcutt, G.H. A study of the autoregressive nature of the time series used for Tinbergen’s model of the economic system of the United States, 1919–1932. J. R. Stat. Soc. 1948, 10, 1–45. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Geary, R.C. The contiguity ratio and statistical mapping. Inc. Stat. 1954, 5, 115–145. [Google Scholar] [CrossRef]
- Yamada, H. Geary’s c and spectral graph theory. Mathematics 2021, 9, 2465. [Google Scholar] [CrossRef]
- Yamada, H. Geary’s c and spectral graph theory: A complement. Mathematics 2023, 11, 4228. [Google Scholar] [CrossRef]
- Gallier, J. Spectral theory of unsigned and signed graphs. Applications to graph clustering: A survey. arXiv 2016, arXiv:1601.04692. [Google Scholar]
- Seber, G.A.F. A Matrix Handbook for Statisticians; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yamada, H. Spatial smoothing using graph Laplacian penalized filter. Spatial Statistics, 2024; forthcoming. [Google Scholar]
- Boots, B.; Tiefelsdorf, M. Global and local spatial autocorrelation in bounded regular tessellations. J. Geogr. Syst. 2000, 2, 319–348. [Google Scholar] [CrossRef]
- Maruyama, Y. An alternative to Moran’s I for spatial autocorrelation. arXiv 2015, arXiv:1501.06260. [Google Scholar]
- Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, C-23, 90–93. [Google Scholar] [CrossRef]
- Strang, G. The discrete cosine transform. Siam Rev. 1999, 41, 135–147. [Google Scholar] [CrossRef]
- Lancaster, H.O. The Helmert Matrices. Am. Math. Mon. 1965, 72, 4–12. [Google Scholar] [CrossRef]
- Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: New York, NY, USA, 2012. [Google Scholar]
- Estrada, E.; Knight, P. A First Course in Network Theory; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, H. A New Perspective on Moran’s Coefficient: Revisited. Mathematics 2024, 12, 253. https://doi.org/10.3390/math12020253
Yamada H. A New Perspective on Moran’s Coefficient: Revisited. Mathematics. 2024; 12(2):253. https://doi.org/10.3390/math12020253
Chicago/Turabian StyleYamada, Hiroshi. 2024. "A New Perspective on Moran’s Coefficient: Revisited" Mathematics 12, no. 2: 253. https://doi.org/10.3390/math12020253
APA StyleYamada, H. (2024). A New Perspective on Moran’s Coefficient: Revisited. Mathematics, 12(2), 253. https://doi.org/10.3390/math12020253